×

Extracting and representing qualitative behaviors of complex systems in phase space. (English) Zbl 0810.58011

Summary: This paper presents a computational method for automatically analyzing qualitative behaviors of complex dynamical systems in phase space. To demonstrate this method, a program called MAPS has been constructed that understands qualitatively distinct features of a phase space and represents geometric information about these features in a dimension- independent description, using deep domain knowledge of dynamical systems theory. Given a dynamical system specified as a system of governing equations, MAPS incrementally extracts the qualitative information about the system in terms of a qualitative phase-space structure describing steady-state behaviors, stabilities, and transient properties. MAPS generates a high-level symbolic description of the system sensible to human beings and manipulable by other programs, through a combination of numerical, combinatorial, and geometric computations and spatial reasoning techniques. MAPS has successfully demonstrated its power in a difficult engineering domain of nonlinear control design.

MSC:

37E99 Low-dimensional dynamical systems
94A15 Information theory (general)
93B40 Computational methods in systems theory (MSC2010)
70G10 Generalized coordinates; event, impulse-energy, configuration, state, or phase space for problems in mechanics
37N99 Applications of dynamical systems

Software:

MACSYMA
Full Text: DOI

References:

[1] Abelson, H., Bifurcation Interpreter: a step towards the automatic analysis of dynamical systems, Int. J. Comput. Math. Appl., 20, 8 (1990)
[2] Abelson, H.; Eisenberg, M.; Halfant, M.; Katzenelson, J.; Sacks, E.; Sussman, G. J.; Wisdom, J.; Yip, K., Intelligence in scientific computing, Commun. ACM, 32, 5 (1989)
[3] Boissonnat, J.-D., Geometric structures for three-dimensional shape representation, ACM Trans. Graphics, 3, 4 (1984)
[4] Bradley, E., Control algorithms for chaotic systems, (Proceedings First European Conference on Algebraic Computing in Control (1991)) · Zbl 0793.93018
[5] Bradley, E.; Zhao, F., Phase-space control system design, IEEE Control Syst., 13, 2, 39-47 (1993)
[6] Chiang, H.; Hirsh, M. W.; Wu, F. F., Stability regions of nonlinear autonomous dynamical systems, IEEE Trans. Autom. Control, 33, 1 (1988) · Zbl 0639.93043
[7] Clinger, W., \(Revised^4\) report on the algorithmic language scheme, (AIM-848b (1991), MIT AI Lab: MIT AI Lab Cambridge, MA)
[8] Genesio, R.; Tartaglia, M.; Vicino, A., On the estimation of asymptotic stability regions: state of the art and new proposals, IEEE Trans. Autom. Control, 30, 8, 747-755 (1985) · Zbl 0568.93054
[9] Guckenheimer, J.; Holmes, P., (Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (1983), Springer: Springer New York) · Zbl 0515.34001
[10] Hirsh, M. W.; Smale, S., (Differential Equations, Dynamical Systems and Linear Algebra (1974), Academic Press: Academic Press New York) · Zbl 0309.34001
[11] Hsu, C. S., (Cell-to-Cell Mapping (1987), Springer: Springer New York) · Zbl 0632.58002
[12] Hsu, C. S.; Guttalu, R. S., An unraveling algorithm for global analysis of dynamical systems: an application of cell-to-cell mappings, J. Appl. Mech., 47, 940-948 (1980) · Zbl 0452.58020
[13] Munkres, J. R., (Elements of Algebraic Topology (1984), Addison-Wesley: Addison-Wesley Reading, MA) · Zbl 0673.55001
[14] Nishida, T.; Mizutani, K.; Kubota, A.; Doshita, S., Automated phase portrait analysis by integrating qualitative and quantitative analysis, (Proceedings AAAI-91. Proceedings AAAI-91, Anaheim, CA (1991))
[15] Ogata, K., (Modern Control Engineering (1970), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ)
[16] Packard, N. H.; Crutchfield, J. P.; Farmer, J. D.; Shaw, R. S., Geometry from a time series, Phys. Rev. Lett., 45, 712-716 (1980)
[17] Palacios-Velez, O.; Renaud, B. C., A dynamic hierarchical algorithm for computing Delaunay triangulations and other closest-point problems, ACM Trans. Math. Softw., 16, 3, 275-292 (1990) · Zbl 0883.68114
[18] Parker, T. S.; Chua, L. O., (Practical Numerical Algorithms for Chaotic Systems (1989), Springer: Springer New York) · Zbl 0692.58001
[19] Poincaré, H., Mémoire sur les courbes définies par une équation différentielle, J. Math., 7, 375 (1881) · JFM 13.0591.01
[20] Preparata, F. P.; Shamos, M. I., (Computational Geometry (1985), Springer: Springer New York) · Zbl 0759.68037
[21] Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T., (Numerical Recipes: the Art of Scientific Computing (1988), Cambridge University Press: Cambridge University Press Cambridge, England) · Zbl 0661.65001
[22] Rand, R. H., (Computer Algebra in Applied Mathematics: An Introduction to MACSYMA (1984), Pitman: Pitman Boston, MA) · Zbl 0583.68012
[23] Sacks, E., Automatic analysis of one-parameter planar ordinary differential equations by intelligent numerical simulation, Artif. Intell., 48, 27-56 (1991) · Zbl 0714.65068
[24] Smale, S., Differentiable dynamical systems, Bull. AMS, 73 (1967) · Zbl 0202.55202
[25] Stoker, J. J., (Nonlinear Vibrations (1950), Interscience: Interscience New York) · Zbl 0035.39603
[26] Takens, F., Detecting strange attractors in turbulence, (Lecture Notes in Mathematics (1980), Springer: Springer New York), 366-381 · Zbl 0513.58032
[27] Yip, K. M., (KAM: A System for Intelligently Guiding Numerical Experimentation by Computer (1991), MIT Press: MIT Press Cambridge, MA)
[28] Zhao, F., Extracting and representing qualitative behaviors of complex systems in phase spaces, (Proceedings IJCAI-91. Proceedings IJCAI-91, Sydney, Australia (1991)) · Zbl 0752.68076
[29] Zhao, F., Phase space navigator: towards automating control synthesis in phase spaces for nonlinear control systems, (Proceedings Third IFAC International Workshop on AI in Real Time Control (1991), Pergamon Press: Pergamon Press Oxford, England), also: MIT AI Lab. Report MIT-AIM-1286, Cambridge, MA
[30] Zhao, F., Automatic analysis and synthesis of controllers for dynamical systems based on phase space knowledge, Ph.D. Thesis, MIT, MIT AI Lab Tech. Report AI-TR-1385, Cambridge, MA (1992)
[31] Zhao, F., Computational dynamics: modeling and visualizing trajectory flows in phase space, Ann. Math. Artif. Intell., 8, 3-4, 285-300 (1993) · Zbl 1047.93500
[32] Zhao, F.; Thornton, R., Automatic design of a Maglev controller in state space, (Proceedings 31st IEEE Conference on Decision and Control. Proceedings 31st IEEE Conference on Decision and Control, Tucson, AZ (1992)), 2562-2567, also: MIT AI Lab. Report MIT-AIM-1303, Cambridge, MA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.