×

Initial conditions for the scalaron dark matter. (English) Zbl 1515.83117


MSC:

83C56 Dark matter and dark energy
83E05 Geometrodynamics and the holographic principle
81V22 Unified quantum theories
58J47 Propagation of singularities; initial value problems on manifolds
94A17 Measures of information, entropy
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
35B20 Perturbations in context of PDEs
81V25 Other elementary particle theory in quantum theory
47A10 Spectrum, resolvent

References:

[1] Capozziello, Salvatore; Cardone, V. F.; Troisi, A., Dark energy and dark matter as curvature effects, JCAP, 08 (2006) · doi:10.1088/1475-7516/2006/08/001
[2] Nojiri, Shin’ichi; Odintsov, Sergei D., Dark energy, inflation and dark matter from modified F(R) gravity, TSPU Bulletin, N8(110), 7-19 (2011)
[3] Cembranos, Jose A. R., Dark Matter from R2-gravity, Phys. Rev. Lett., 102 (2009) · doi:10.1103/PhysRevLett.102.141301
[4] Cembranos, Jose A. R., Modified gravity and dark matter, J. Phys. Conf. Ser., 718 (2016) · doi:10.1088/1742-6596/718/3/032004
[5] Corda, C.; Mosquera Cuesta, H. J.; Lorduy Gomez, R., High-energy scalarons in R^2 gravity as a model for Dark Matter in galaxies, Astropart. Phys., 35, 362-370 (2012) · doi:10.1016/j.astropartphys.2011.08.009
[6] Katsuragawa, Taishi; Matsuzaki, Shinya, Dark matter in modified gravity?, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.044040
[7] Katsuragawa, Taishi; Matsuzaki, Shinya, Cosmic History of Chameleonic Dark Matter in F(R) Gravity, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.064037
[8] Yadav, Bal Krishna; Verma, Murli Manohar, Dark matter as scalaron in f(R) gravity models, JCAP, 10 (2019) · Zbl 1515.83251 · doi:10.1088/1475-7516/2019/10/052
[9] Parbin, Nashiba; Goswami, Umananda Dev, Scalarons mimicking dark matter in the Hu-Sawicki model of f(R) gravity, Mod. Phys. Lett. A, 36 (2021) · doi:10.1142/S0217732321502655
[10] Shtanov, Yuri, Light scalaron as dark matter, Phys. Lett. B, 820 (2021) · Zbl 07414469 · doi:10.1016/j.physletb.2021.136469
[11] Kumar Sharma, Vipin; Verma, Murli Manohar, Unified f(R) gravity at local scales, Eur. Phys. J. C, 82, 400 (2022) · doi:10.1140/epjc/s10052-022-10329-6
[12] Sotiriou, Thomas P.; Faraoni, Valerio, f(R) Theories Of Gravity, Rev. Mod. Phys., 82, 451-497 (2010) · Zbl 1205.83006 · doi:10.1103/RevModPhys.82.451
[13] De Felice, Antonio; Tsujikawa, Shinji, f(R) theories, Living Rev. Rel., 13, 3 (2010) · Zbl 1215.83005 · doi:10.12942/lrr-2010-3
[14] Starobinsky, Alexei A.; Khalatnikov, I. M.; Mineev, V. P., A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B, 91, 99-102 (1980) · Zbl 1371.83222 · doi:10.1016/0370-2693(80)90670-X
[15] Vilenkin, Alexander, Classical and Quantum Cosmology of the Starobinsky Inflationary Model, Phys. Rev. D, 32, 2511 (1985) · doi:10.1103/PhysRevD.32.2511
[16] Planck Collaboration; Akrami, Y., Planck 2018 results. X. Constraints on inflation, Astron. Astrophys., 641, A10 (2020) · doi:10.1051/0004-6361/201833887
[17] Burrage, Clare; Copeland, Edmund J.; Millington, Peter; Spannowsky, Michael, Fifth forces, Higgs portals and broken scale invariance, JCAP, 11 (2018) · Zbl 1527.83079 · doi:10.1088/1475-7516/2018/11/036
[18] LHC Higgs Cross Section Working Group Collaboration; de Florian, D., Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, 2/2017 (2016) · doi:10.23731/CYRM-2017-002
[19] Shtanov, Yuri, On the Conformal Frames in f(R) Gravity, Universe, 8, 69 (2022) · doi:10.3390/universe8020069
[20] Dicke, R. H., Mach’s principle and invariance under transformation of units, Phys. Rev., 125, 2163-2167 (1962) · Zbl 0113.45101 · doi:10.1103/PhysRev.125.2163
[21] Faraoni, Valerio; Nadeau, Shahn, The (pseudo)issue of the conformal frame revisited, Phys. Rev. D, 75 (2007) · doi:10.1103/PhysRevD.75.023501
[22] Stelle, K. S., Classical Gravity with Higher Derivatives, Gen. Rel. Grav., 9, 353-371 (1978) · doi:10.1007/BF00760427
[23] Kapner, D. J.; Cook, T. S.; Adelberger, E. G.; Gundlach, J. H.; Heckel, Blayne R.; Hoyle, C. D., Tests of the gravitational inverse-square law below the dark-energy length scale, Phys. Rev. Lett., 98 (2007) · doi:10.1103/PhysRevLett.98.021101
[24] Adelberger, E. G.; Heckel, Blayne R.; Hoedl, Seth A.; Hoyle, C. D.; Kapner, D. J.; Upadhye, A., Particle Physics Implications of a Recent Test of the Gravitational Inverse Sqaure Law, Phys. Rev. Lett., 98 (2007) · doi:10.1103/PhysRevLett.98.131104
[25] Perivolaropoulos, Leandros; Kazantzidis, Lavrentios, Hints of modified gravity in cosmos and in the lab?, Int. J. Mod. Phys. D, 28 (2019) · doi:10.1142/S021827181942001X
[26] Dine, Michael, Naturalness Under Stress, Ann. Rev. Nucl. Part. Sci., 65, 43-62 (2015) · doi:10.1146/annurev-nucl-102014-022053
[27] H. Epstein and V. Glaser, The role of locality in perturbation theory, Ann. Inst. H. Poincare Phys. Theor.A 19 (1973) 211 [Inspire]. · Zbl 1216.81075
[28] G. Scharf, Finite quantum electrodynamics, Dover, New York, NY, U.S.A. (2014).
[29] Mooij, Sander; Shaposhnikov, Mikhail, QFT without infinities and hierarchy problem (2021)
[30] Mooij, Sander; Shaposhnikov, Mikhail, Finite Callan-Symanzik renormalisation for multiple scalar fields (2021)
[31] Salvio, Alberto; Mazumdar, Anupam, Classical and Quantum Initial Conditions for Higgs Inflation, Phys. Lett. B, 750, 194-200 (2015) · doi:10.1016/j.physletb.2015.09.020
[32] Wang, Yun-Chao; Wang, Tower, Primordial perturbations generated by Higgs field and R^2 operator, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.123506
[33] Ema, Yohei, Higgs Scalaron Mixed Inflation, Phys. Lett. B, 770, 403-411 (2017) · Zbl 1403.83059 · doi:10.1016/j.physletb.2017.04.060
[34] He, Minxi; Starobinsky, Alexei A.; Yokoyama, Jun’ichi, Inflation in the mixed Higgs-R^2 model, JCAP, 05 (2018) · Zbl 1536.83102 · doi:10.1088/1475-7516/2018/05/064
[35] Gorbunov, Dmitry; Tokareva, Anna, Scalaron the healer: removing the strong-coupling in the Higgs- and Higgs-dilaton inflations, Phys. Lett. B, 788, 37-41 (2019) · Zbl 1405.83079 · doi:10.1016/j.physletb.2018.11.015
[36] Gundhi, Anirudh; Steinwachs, Christian F., Scalaron-Higgs inflation, Nucl. Phys. B, 954 (2020) · Zbl 1473.83093 · doi:10.1016/j.nuclphysb.2020.114989
[37] Canko, Dhimiter D.; Gialamas, Ioannis D.; Kodaxis, George P., A simple F(ℛ,ϕ ) deformation of Starobinsky inflationary model, Eur. Phys. J. C, 80, 458 (2020) · doi:10.1140/epjc/s10052-020-8025-4
[38] Cheong, Dhong Yeon; Lee, Sung Mook; Park, Seong Chan, Progress in Higgs inflation, J. Korean Phys. Soc., 78, 897-906 (2021) · doi:10.1007/s40042-021-00086-2
[39] Vilenkin, Alexander, The Birth of Inflationary Universes, Phys. Rev. D, 27, 2848 (1983) · doi:10.1103/PhysRevD.27.2848
[40] Starobinsky, Alexei A., STOCHASTIC DE SITTER (INFLATIONARY) STAGE IN THE EARLY UNIVERSE, Lect. Notes Phys., 246, 107-126 (1986) · doi:10.1007/3-540-16452-9_6
[41] Csaki, CsabaDodelson, ScottPhysics of the large and the small, TASI 09, proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder, Colorado, USA, 1-26 June 20092011 · Zbl 1234.81015
[42] D.S. Gorbunov and V.A. Rubakov, Introduction to the theory of the early universe: hot big bang theory, second edition, World Scientific, Singapore (2017). · Zbl 1376.83004 · doi:10.1142/10447
[43] Laine, Mikko; Vuorinen, Aleksi, Basics of Thermal Field Theory (2016), Springer · Zbl 1356.81007
[44] Planck Collaboration; Aghanim, N., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys., 641, A6 (2020) · doi:10.1051/0004-6361/201833910
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.