×

Black hole thermodynamics in asymptotically safe gravity. (English) Zbl 1518.83053

Summary: We have investigated the black hole thermodynamics and the phase transition for renormalized group improved asymptotically safe Schwarzschild black hole. This geometry takes into account the quantum gravitational correction in the running gravitational constant identifying \(G(r) \equiv G(k=k(r))\). We studied various thermodynamic quantity like the Hawking temperature, specific heat and entropy for the general parameter \(\gamma\) for quantum corrected Schwarzschild metric. We have noticed that the coefficient of the leading quantum correction, that is, the logarithmic correction gets affected by the presence of \(\gamma\). We further study the local temperature, thermal stability of the black hole and the free energy considering a cavity enclosing the black hole. According to the local specific heat, there exists three black hole states, among them the large and tiny black hole are thermally stable states. We further investigate the on-shell free energy and find that no Hawking-Page phase transition occurs here unlike the ordinary Schwarzschild black hole. The black hole state always prevails for all temperatures. Also, we have found two critical points, \(T_{c1}\) and \(T_{c2}\), corresponding to the phase transition from one black hole state to another.

MSC:

83C57 Black holes
83C45 Quantization of the gravitational field
80A10 Classical and relativistic thermodynamics
82B26 Phase transitions (general) in equilibrium statistical mechanics
82B28 Renormalization group methods in equilibrium statistical mechanics
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
94A17 Measures of information, entropy
82B30 Statistical thermodynamics
35B38 Critical points of functionals in context of PDEs (e.g., energy functionals)

References:

[1] Bekenstein, JD, Black holes and the second law, Lett. Nuovo Cim., 4, 737-740 (1972) · doi:10.1007/BF02757029
[2] Bekenstein, JD, Black holes and entropy, Phys. Rev. D, 7, 2333 (1973) · Zbl 1369.83037 · doi:10.1103/PhysRevD.7.2333
[3] Hawking, SW, Black hole explosions, Nature, 248, 30-31 (1974) · Zbl 1370.83053 · doi:10.1038/248030a0
[4] Bardeen, JM; Carter, B.; Hawking, SW, The four laws of black hole mechanics, Commun. Math. Phys., 31, 161-170 (1973) · Zbl 1125.83309 · doi:10.1007/BF01645742
[5] Hawking, SW, Particle creation by black holes, Commun. Math. Phys., 43, 199 (1975) · Zbl 1378.83040 · doi:10.1007/BF02345020
[6] Adler, RJ; Chen, P.; Santiago, DI, The generalized uncertainty principle and black hole remnants, Gen. Relativ. Gravit., 33, 2101 (2001) · Zbl 1003.83020 · doi:10.1023/A:1015281430411
[7] Gangopadhyay, S.; Dutta, A.; Saha, A., Generalized uncertainty principle and black hole thermodynamics, Gen. Relativ. Gravit., 46, 1661 (2014) · Zbl 1286.83057 · doi:10.1007/s10714-013-1661-3
[8] Gangopadhyay, S.; Dutta, A.; Faizal, M., Constraints on the generalized uncertainty principle from black-hole thermodynamics, Euro. Phys. Lett., 112, 20006 (2015) · doi:10.1209/0295-5075/112/20006
[9] Amelino-Camelia, G., Relativity in spacetimes with short-distance structure governed by an observer-independent (Planckian) length scale, Int. J. Mod. Phys. D, 11, 35 (2002) · Zbl 1062.83500 · doi:10.1142/S0218271802001330
[10] Magueijo, J.; Smolin, L., “Gravity’s Rainbow” Class, Quant. Grav., 21, 1725 (2004) · Zbl 1051.83004 · doi:10.1088/0264-9381/21/7/001
[11] Gim, Y.; Kim, W., Thermodynamic phase transition in the rainbow Schwarzschild black hole, JCAP, 1410, 003 (2014) · doi:10.1088/1475-7516/2014/10/003
[12] Mandal, R.; Bhattacharyya, S.; Gangopadhyay, S., Rainbow black hole thermodynamics and the generalized uncertainty principle, Gen. Relativ. Gravit., 50, 110, 143 (2018) · Zbl 1402.83059 · doi:10.1007/s10714-018-2468-z
[13] Parikh, MK; Wilczek, F., Hawking radiation as tunneling, Phys. Rev. Lett., 85, 5042 (2000) · Zbl 1369.83053 · doi:10.1103/PhysRevLett.85.5042
[14] Shankaranarayanan, S., Temperature and entropy of Schwarzschild-de Sitter spacetime, Phys. Rev. D, 67 (2003) · doi:10.1103/PhysRevD.67.084026
[15] Weinberg, S.: General Relativity: An Einstein Centenary Survey, edited by S.W. Hawking and W. Israel. Cambridge University Press, Cambridge (1979) · Zbl 0424.53001
[16] Reuter, M., Nonperturbative evolution equation for quantum gravity, Phys. Rev. D, 57, 10, 971 (1998) · doi:10.1103/PhysRevD.57.971
[17] Niedermaier, M.; Reuter, M., The asymptotic safety scenario in quantum gravity, Living Rev. Rel., 9, 5 (2006) · Zbl 1255.83056 · doi:10.12942/lrr-2006-5
[18] Lauscher, O., Reuter, M.: Quantum einstein gravity: towards an asymptotically safe field theory of gravity. Approaches to Fundamental Physics, Springer, Berlin, Heidelberg, Lecture Notes in Physics 721, 265-285 (2007) · Zbl 1153.83023
[19] Codello, A.; Percacci, R.; Rahmede, C., Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation, Ann. Phys., 324, 414-469 (2009) · Zbl 1161.83343 · doi:10.1016/j.aop.2008.08.008
[20] Mandal, R.; Gangopadhyay, S.; Lahiri, A., Cosmology of Bianchi type-I metric using renormalization group approach for quantum gravity, Class. Quant. Grav., 37, 6 (2020) · Zbl 1478.83096 · doi:10.1088/1361-6382/ab7287
[21] Bonanno, A.; Reuter, M., Renormalization group improved black hole spacetimes, Phys. Rev. D, 62 (2000) · doi:10.1103/PhysRevD.62.043008
[22] Bonanno, A.; Reuter, M., Spacetime structure of an evaporating black hole in quantum gravity, Phys. Rev. D, 73 (2006) · doi:10.1103/PhysRevD.73.083005
[23] Gangopadhyay, S.; Dutta, A., Constraints on rainbow gravity functions from black-hole thermodynamics, Euro. Phys. Lett., 115, 50005 (2016) · doi:10.1209/0295-5075/115/50005
[24] Gangopadhyay, S.; Dutta, A., Black hole thermodynamics and generalized uncertainty principle with higher order terms in momentum uncertainty, Adv. High Energy Phys., 2018, 7450607 (2018) · doi:10.1155/2018/7450607
[25] Hawking, SW; Page, DN, Thermodynamics of black holes in anti- de sitter space, Commun. Math. Phys., 87, 577 (1983) · doi:10.1007/BF01208266
[26] Brown, JD; Creighton, J.; Mann, RB, Temperature, energy, and heat capacity of asymptotically anti-de Sitter black holes, Phys. Rev. D, 50, 6394 (1994) · doi:10.1103/PhysRevD.50.6394
[27] York, JW Jr, Black-hole thermodynamics and the Euclidean Einstein action, Phys. Rev. D, 33, 2092 (1986) · Zbl 1058.83514 · doi:10.1103/PhysRevD.33.2092
[28] Tolman, RC, On the weight of heat and thermal equilibrium in general relativity, Phys. Rev., 35, 904 (1930) · JFM 56.0744.02 · doi:10.1103/PhysRev.35.904
[29] Stephens, GJ; Hu, BL, Notes on black hole phase transitions, Int. J. Theof. Phys., 40, 2183 (2001) · Zbl 0987.83035 · doi:10.1023/A:1012930019453
[30] Natsuume, M.: AdS/CFT Duality User Guide. arXiv:1409.3575 [hep-th] · Zbl 1350.83001
[31] Cai, RG, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D, 65 (2002) · doi:10.1103/PhysRevD.65.084014
[32] Rajani, KV; Rizwan, CLA; Kumara, AN; Vaid, D.; Ajith, KM, Regular Bardeen AdS black hole as a heat engine, Nucl. Phys. B, 960 (2020) · Zbl 1475.83089 · doi:10.1016/j.nuclphysb.2020.115166
[33] Kubiznak, D.; Mann, RB, \(P-V\) criticality of charged AdS black holes, J. High Energy Phys., 2012, 33 (2012) · Zbl 1397.83072 · doi:10.1007/JHEP07(2012)033
[34] Gunasekaran, S.; Kubiznak, D.; Mann, RB, Extended phase space thermodynamics for charged and rotating black holes and Born-Infeld vacuum polarization, J. High Energy Phys., 2012, 110 (2012) · doi:10.1007/JHEP11(2012)110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.