×

Entropic approach to multiscale clustering analysis. (English) Zbl 1297.85005

Summary: Recently, a novel method has been introduced to estimate the statistical significance of clustering in the direction distribution of objects. The method involves a multiscale procedure, based on the Kullback-Leibler divergence and the Gumbel statistics of extreme values, providing high discrimination power, even in presence of strong background isotropic contamination. It is shown that the method is: (i) semi-analytical, drastically reducing computation time; (ii) very sensitive to small, medium and large scale clustering; (iii) not biased against the null hypothesis. Applications to the physics of ultra-high energy cosmic rays, as a cosmological probe, are presented and discussed.

MSC:

85A25 Radiative transfer in astronomy and astrophysics
85A40 Astrophysical cosmology
85A35 Statistical astronomy
62P35 Applications of statistics to physics
85-08 Computational methods for problems pertaining to astronomy and astrophysics
94A17 Measures of information, entropy
85A15 Galactic and stellar structure
Full Text: DOI

References:

[1] DOI: 10.1103/PhysRevLett.16.748 · doi:10.1103/PhysRevLett.16.748
[2] Zatsepin, Upper limit of the spectrum of cosmic rays, JETP Lett. 4 pp 78– (1966)
[3] DOI: 10.1016/j.astropartphys.2006.04.006 · doi:10.1016/j.astropartphys.2006.04.006
[4] DOI: 10.1086/526493 · doi:10.1086/526493
[5] DOI: 10.1088/0004-637X/702/2/825 · doi:10.1088/0004-637X/702/2/825
[6] Correlation of the highest-energy cosmic rays with nearby extragalactic objects, Science 318 pp 938– (2007) · doi:10.1126/science.1151124
[7] Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei, Astropart. Phys. 29 pp 188– (2008) · doi:10.1016/j.astropartphys.2008.01.002
[8] Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter, Astropart. Phys. 34 pp 314– (2010) · doi:10.1016/j.astropartphys.2010.08.010
[9] DOI: 10.1088/1475-7516/2011/03/008 · doi:10.1088/1475-7516/2011/03/008
[10] DOI: 10.1002/j.1538-7305.1948.tb01338.x · Zbl 1154.94303 · doi:10.1002/j.1538-7305.1948.tb01338.x
[12] DOI: 10.1088/0954-3899/40/1/015201 · doi:10.1088/0954-3899/40/1/015201
[14] DOI: 10.1109/TAC.1974.1100705 · Zbl 0314.62039 · doi:10.1109/TAC.1974.1100705
[15] DOI: 10.2307/3803199 · doi:10.2307/3803199
[16] DOI: 10.1016/S0375-9601(97)00634-8 · Zbl 0967.82503 · doi:10.1016/S0375-9601(97)00634-8
[17] DOI: 10.1103/PhysRevE.56.3927 · doi:10.1103/PhysRevE.56.3927
[18] DOI: 10.1016/j.physa.2006.05.024 · doi:10.1016/j.physa.2006.05.024
[19] Fuchs, Distinguishability and accessible information in quantum theory, arXiv (1995)
[20] DOI: 10.1103/PhysRevA.58.1775 · doi:10.1103/PhysRevA.58.1775
[21] DOI: 10.1103/PhysRevA.60.3461 · doi:10.1103/PhysRevA.60.3461
[22] DOI: 10.1103/PhysRevA.68.032302 · doi:10.1103/PhysRevA.68.032302
[23] DOI: 10.1126/science.451587 · doi:10.1126/science.451587
[24] DOI: 10.1071/WR99107 · doi:10.1071/WR99107
[25] DOI: 10.1103/PhysRevE.85.016101 · doi:10.1103/PhysRevE.85.016101
[26] DOI: 10.1214/aoms/1177729694 · Zbl 0042.38403 · doi:10.1214/aoms/1177729694
[27] Kullback, The Kullback-Leibler distance, Am. Stat. 41 pp 340– (1987)
[28] Cover, Elements of Information Theory (1991)
[29] DOI: 10.1016/j.jmva.2006.03.007 · Zbl 1101.62004 · doi:10.1016/j.jmva.2006.03.007
[30] Sayyareh, A new upper bound for Kullback-Leibler divergence, Appl. Math. Sci. 5 pp 3303– (2011) · Zbl 1397.60056
[31] de Haan, Extreme Value Theory: An Introduction (2006) · Zbl 1101.62002
[32] Gumbel, Statistical Theory of Extreme Values and Some Practical Applications: A Series of Lectures (1954) · Zbl 0056.13107
[33] Gumbel, Statistics of Extremes (2004)
[34] DOI: 10.1016/j.astropartphys.2003.12.006 · doi:10.1016/j.astropartphys.2003.12.006
[35] Baumgartner, The Swift-BAT 58 Month Survey Volume 42 pp 675– (2010)
[36] DOI: 10.1103/PhysRevD.82.123006 · doi:10.1103/PhysRevD.82.123006
[37] DOI: 10.1016/j.nuclphysbps.2009.03.063 · doi:10.1016/j.nuclphysbps.2009.03.063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.