×

Continuous stochastic processes in Riesz spaces: The Doob-Meyer decomposition. (English) Zbl 1216.46005

Riesz spaces provide an ideal framework for developing an abstract theory of stochastic processes. The general theory was considered by Kuo, Labuschagne, and Watson in a series of papers. These authors studied countable processes in the Riesz space setting.
The author of the present paper studies the aspects of continuous stochastic processes in Riesz spaces. He develops notions to prove the Doob-Meyer Decomposition Theorem for submartingales, which states that a submartingale satisfying a uniform integrability condition can be decomposed uniquely as the sum of a martingale and an increasing right continuous predictable process. This is nontrivial even in the classical case.

MSC:

46A40 Ordered topological linear spaces, vector lattices
60G44 Martingales with continuous parameter
60G07 General theory of stochastic processes
06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
Full Text: DOI

References:

[1] Aliprantis C.D., Burkinshaw O.: Locally Solid Riesz Spaces. Academic Press, New York (1978) · Zbl 0402.46005
[2] Aliprantis C.D., Burkinshaw O.: Positive Operators. Academic Press, Orlando (1985)
[3] DeMarr R.: A martingale convergence theorem in vector lattices. Can. J. Math. 18, 424–432 (1966) · Zbl 0142.14004 · doi:10.4153/CJM-1966-045-x
[4] Fremlin D.H.: Topological Riesz Spaces and Measure Theory. Cambridge University Press, Cambridge (1974) · Zbl 0273.46035
[5] Karatzas I., Shreve S.E.: Brownian Motion and Stochastic Calculus. Graduate Texts in Mathematics. Springer, New York (1991) · Zbl 0734.60060
[6] Kuo, W.-C.: Stochastic Processes on Vector Lattices. Thesis, University of the Witwatersrand (2006)
[7] Kuo W.-C., Labuschagne C.C.A., Watson B.A.: Discrete time stochastic processes on Riesz spaces. Indag. Math. 15, 435–451 (2004) · Zbl 1057.60041 · doi:10.1016/S0019-3577(04)80010-7
[8] Kuo, W.-C., Labuschagne, C.C.A., Watson, B.A.: An upcrossing theorem for martingales on Riesz spaces, Soft methodology and random information systems, pp. 101–108. Springer, Berlin (2004) · Zbl 1057.60003
[9] Kuo W.-C., Labuschagne C.C.A., Watson B.A.: Conditional expectation on Riesz spaces. J. Math. Anal. Appl. 303, 509–521 (2005) · Zbl 1075.46002 · doi:10.1016/j.jmaa.2004.08.050
[10] Kuo, W.-C., Labuschagne, C.C.A., Watson, B.A.: Zero-one laws for Riesz space and fuzzy random variables, Fuzzy logic, soft computing and computational intelligence, pp. 393–397. Springer and Tsinghua University Press, Beijing, China (2005)
[11] Kuo W.-C., Labuschagne C.C.A., Watson B.A.: Convergence of Riesz space martingales. Indag. Math. 17, 271–283 (2006) · Zbl 1105.47034 · doi:10.1016/S0019-3577(06)80021-2
[12] Kuo, W.-C., Labuschagne, C.C.A., Watson, B.A.: Ergodic theory and the strong law of large numbers on Riesz spaces. J. Math. Anal. Appl. (to appear) · Zbl 1114.46015
[13] Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces I. North-Holland, Amsterdam (1971) · Zbl 0231.46014
[14] Meyer P.A.: A decomposition theorem for supermartingales. Illinois J. Math. 6, 193–205 (1962) · Zbl 0133.40304
[15] Meyer-Nieberg P.: Banach Lattices. Springer, Berlin (1991) · Zbl 0743.46015
[16] Schaefer H.H.: Banach Lattices and Positive Operators. Springer, Berlin (1974) · Zbl 0296.47023
[17] Stoica G.: Vector valued quasi-martingales. Stud. Cerc. Mat. 42, 73–79 (1990) · Zbl 0706.60044
[18] Stoica G.: The structure of stochastic processes in normed vector lattices. Stud. Cerc. Mat. 46, 477–486 (1994) · Zbl 0815.60008
[19] Troitsky V.: Martingales in Banach lattices. Positivity 9, 437–456 (2005) · Zbl 1101.60028 · doi:10.1007/s11117-004-2769-1
[20] Watson B.A.: An Ândo-Douglas type theorem in Riesz spaces with a conditional expectation. Positivity 13(3), 543–558 (2009) · Zbl 1186.47038 · doi:10.1007/s11117-008-2239-2
[21] Zaanen A.C.: Riesz Spaces II. North-Holland, Amsterdam (1983) · Zbl 0519.46001
[22] Zaanen A.C.: Introduction to Operator Theory in Riesz spaces. Springer, Berlin (1991) · Zbl 0878.47022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.