×

Bicontinuity of the Dixmier map. (English) Zbl 0743.17013

Let \({\mathfrak g}\) be a complex solvable Lie algebra with enveloping algebra \(U({\mathfrak g})\) and algebraic adjoint group \(G\). The (factorized) Dixmier map \(I\) is a correspondence between coadjoint \(G\)-orbits and primitive ideals in \(U({\mathfrak g})\) (all of which are completely prime). It is known to be a continuous bijection and in fact a piecewise homeomorphism [W. Borho, P. Gabriel and R. Rentschler, Primideale in Einhüllenden auflösbarer Lie-algebren, Lect. Notes Math. 357 (1973; Zbl 0293.17005)].
The present article shows that it is a homeomorphism on all of \({\mathfrak g}^*/{\mathfrak G}\); this was previously known for nilpotent \({\mathfrak g}\) [N. Conze-Berline, J. Algebra 34, 444-450 (1975; Zbl 0308.17006)].
The first step of the proof is to use standard generic flatness techniques from commutative algebra to replace \({\mathfrak g}\) by a solvable restricted Lie algebra in characteristic \(p\). Next the author introduces an “orbital correspondence”, which can be defined only in prime characteristic, to pass from one stratum of \({\mathfrak g}^*\) on which \(I\) is known to be bicontinuous to another. Finally, he appeals to a classification theorem of B. Ju. Weisfeiler and V. G. Kac [Funct. Anal. Appl. 5, 111-117 (1971); translation from Funkts. Anal. Prilozh. 5, No. 2, 28-36 (1971; Zbl 0237.17003)] to show that certain induced ideals are primitive and certain subsets of primitive ideals are dense in the Jacobson topology.
{Reviewer’s remark: The use of modular methods to prove results in characteristic 0 has been an important theme in much of the author’s recent work}.

MSC:

17B35 Universal enveloping (super)algebras
17B30 Solvable, nilpotent (super)algebras
17B50 Modular Lie (super)algebras
Full Text: DOI

References:

[1] L. Auslander and B. Kostant, Polarization and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255 – 354. · Zbl 0233.22005 · doi:10.1007/BF01389744
[2] P. Bernat et. al., Représentations des groupes de Lie résolubles, Dunod, Paris, 1972.
[3] Walter Borho, Peter Gabriel, and Rudolf Rentschler, Primideale in Einhüllenden auflösbarer Lie-Algebren (Beschreibung durch Bahnenräume), Lecture Notes in Mathematics, Vol. 357, Springer-Verlag, Berlin-New York, 1973 (German). · Zbl 0293.17005
[4] Pierre Cartier, Questions de rationalité des diviseurs en géométrie algébrique, Bull. Soc. Math. France 86 (1958), 177 – 251 (French). · Zbl 0091.33501
[5] Nicole Conze, Espace des idéaux primitifs de l’algèbre enveloppante d’une algèbre de Lie nilpotente, J. Algebra 34 (1975), 444 – 450 (French). · Zbl 0308.17006 · doi:10.1016/0021-8693(75)90168-4
[6] Nicole Conze and Michel Duflo, Sur l’algèbre enveloppante d’une algèbre de Lie résoluble, Bull. Sci. Math. (2) 94 (1970), 201 – 208 (French). · Zbl 0202.04101
[7] Nicole Conze and Michèle Vergne, Idéaux primitifs des algèbres enveloppantes des algèbres de Lie résolubles, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A985 – A988 (French). · Zbl 0211.35801
[8] Pierre Deligne and Luc Illusie, Relèvements modulo \?² et décomposition du complexe de de Rham, Invent. Math. 89 (1987), no. 2, 247 – 270 (French). · Zbl 0632.14017 · doi:10.1007/BF01389078
[9] J. Dixmier, Représentations irréductibles des algèbres de Lie nilpotentes, An. Acad. Brasil. Ci. 35 (1963), 491 – 519 (French). · Zbl 0143.05302
[10] J. Dixmier, Représentations irréductibles des algèbres de Lie résolubles, J. Math. Pures Appl. (9) 45 (1966), 1 – 66 (French). · Zbl 0136.30603
[11] -, Algèbres enveloppantes, Gauthier-Villars, Paris, 1974. · Zbl 0308.17007
[12] Fokko du Cloux, Représentations de longueur finie des groupes de Lie résolubles, Mem. Amer. Math. Soc. 80 (1989), no. 407, iv+78 (French). · Zbl 0703.22008 · doi:10.1090/memo/0407
[13] Michel Duflo, Sur les représentations irréductibles des algèbres de Lie contenant un idéal nilpotent, C. R. Acad. Sci. Parìs Sér. A-B 270 (1970), A504 – A506 (French). · Zbl 0241.22029
[14] Michel Duflo, Sur les extensions des représentations irréductibles des groupes de Lie nilpotents, Ann. Sci. École Norm. Sup. (4) 5 (1972), 71 – 120 (French). · Zbl 0241.22030
[15] Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons), New York-London, 1962. · Zbl 0121.27504
[16] A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57 – 110 (Russian). · Zbl 0090.09802
[17] Olivier Mathieu, Une formule sur les opérateurs différentiels en caractéristique non nulle, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), no. 14, 405 – 406 (French, with English summary). · Zbl 0617.13021
[18] -, Classification of Harish-Chandra modules for the Virasoro algebra, Invent. Math. (to appear). · Zbl 0779.17025
[19] Claudio Procesi, Rings with polynomial identities, Marcel Dekker, Inc., New York, 1973. Pure and Applied Mathematics, 17. · Zbl 0262.16018
[20] Daniel Quillen, On the endomorphism ring of a simple module over an enveloping algebra, Proc. Amer. Math. Soc. 21 (1969), 171 – 172. · Zbl 0188.08901
[21] Rudolf Rentschler, L’injectivité de l’application de Dixmier pour les algèbres de Lie résolubles, Invent. Math. 23 (1974), 49 – 71 (French). · Zbl 0299.17003 · doi:10.1007/BF01405202
[22] Helmut Strade and Rolf Farnsteiner, Modular Lie algebras and their representations, Monographs and Textbooks in Pure and Applied Mathematics, vol. 116, Marcel Dekker, Inc., New York, 1988. · Zbl 0648.17003
[23] B. Ju. Veĭsfeĭler and V. G. Kac, The irreducible representations of Lie \?-algebras, Funkcional. Anal. i Priložen. 5 (1971), no. 2, 28 – 36 (Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.