×

3D Dirac semimetal supported tunable TE modes. (English) Zbl 07769812

Summary: The tunable propagation properties of transverse electric (TE) plasmonic modes have been investigated in the mid-IR spectral region by using air-Dirac semimetal (DSM)-Si asymmetric structures, including the effects of Fermi levels, temperatures, and scattering times. The results manifest that on the condition that the Fermi level of DSM layer is not very large (\(2|\mu_c| < \hbar\omega\)) and temperature is relatively high (about 100 K), the proposed DSM asymmetric structure supports obvious TE modes, which is quite different from the graphene symmetric structure limited to low liquid helium temperature. The transition frequency increases with Fermi level, the peak position of the real part and the saturation region of the imaginary part of effective index indicates an obvious blue shift. As temperature decreases, the contribution of interband transition becomes stronger, the 3D DSM indicates better dielectric properties and sustains stable TE mode. If scattering time is shorter than 0.1 ps, its effects on the propagation properties are very strong, resulting in a redshift of the real part of effective index. The results are very helpful to understand the tunable properties of DSM TE structures and aid the design of novel plasmonic devices, such as polarizers, modulators, and filters.
© 2021 Wiley-VCH GmbH

MSC:

81-XX Quantum theory
Full Text: DOI

References:

[1] S.Lukman, L.Ding, L.Xu, Y.Tao, A. C.Riis‐Jensen, G.Zhang, Q. Y. S.Wu, M.Yang, S.Luo, C. H.Hsu, L. Z.Yao, G.Liang, H.Lin, Y. W.Zhang, K. S.Thygesen, Q. J.Wang, Y. P.Feng, J. H.Teng, Nat. Nanotechnol.2020, 15, 675.
[2] Q. S.Guo, R. W.Yu, C.Li, S. F.Yuan, B. C.Deng, F. J. G.deAbajo, F. N.Xia, Nat. Mater.2018, 17, 986.
[3] G. B.Osterhoudt, L. K.Diebel, M. J.Gray, X.Yang, J.Stanco, X. W.Huang, B.Shen, N.Ni, P. J. W.Moll, Y.Ran, K. S.Burch, Nat. Mater.2019, 18, 471.
[4] D.Rodrigo, O.Limaj, D.Janner, D.Etezadi, F. J.Garcia de Abajo, V.Pruneri, H.Zltug, Science2015, 349, 165.
[5] B.Meng, B.Qiang, E.Rodriguez, X. N.Hu, G. Z.Liang, Q. J.Wang, Opt. Express2017, 25, 3077.
[6] Q.Guo, R.Yu, C.Li, S.Yuan, B.Deng, F. J.García de Abajo, F. N.Xia, Nat. Mater.2018, 17, 986.
[7] Y. R.Zhao, Z. P.Li, K.Zhou, X. Y.Liao, W.Guan, W. J.Wan, S. J.Yang, J. C.Cao, D.Xu, S.Barbieri, H.Li, Laser Photonics Rev.2021, 15, 2000498.
[8] S.Kim, S. G.Menabde, V. W.Brar, M. S.Jang, Adv. Opt. Mater.2019, 8, 1901194.
[9] F.Monticone, Nat. Photonics2020, 14, 461.
[10] O.Zandi, A.Agrawal, A. B.Shearer, L. C.Reimnitz, C. J.Dahlman, C. M.Staller, D. J.Milliron, Nat. Mater.2018, 17, 710.
[11] W. H.Cao, M.Chern, A. M.Dennis, K. A.Brown, Nano Lett.2019, 19, 5762.
[12] W. H.Cao, N.Alsharif, Z. J.Huang, A. E.White, Y. H.Wang, K. A.Brown, Nat. Commun.2021, 12, 393.
[13] Y. H.Xu, Q. L.Yang, Y.Zhang, S. X.Li, Q.Xu, X. Q.Zhang, Y. F.Li, J. Q.Gu, W. T.Zhang, C.Hu, J. G.Han, W. L.Zhang, Ann. Phys.2019, 531, 201900237.
[14] N. P.Armitage, E. J.Mele, A.Vishwanath, Rev. Mod. Phys.2018, 90, 015001.
[15] P.Di Pietro, M.Ortolani, O.Limaj, A.Di Gaspare, V.Giliberti, F.Giorginni, M.Brahlek, N.Bansal, N.Koirala, S.Oh, P.Calvani, S.Lupi, Nat. Nanotechnol.2013, 8, 556.
[16] A. R.Wright, J. C.Cao, C.Zhang, Phys. Rev. Lett.2009, 103, 207401.
[17] L.Sun, Z. T.Zhou, J. J.Zhong, Z. F.Shi, Y.Mao, H.Li, J. C.Cao, T. H.Tao, Small2020, 16, 2000294.
[18] Y. Q.Zeng, U.Chattopadhyay, B. F.Zhu, B.Qiang, J. H.Li, Y. H.Jin, L. H.Li, A. G.Davies, E. H.Linfield, B. L.Zhang, Y. D.Chong, Q. J.Wang, Nature2020, 578, 246.
[19] S. Y.Xu, C.Liu, S. K.Kushwaha, R.Sankar, J. W.Krizan, I.Belopolski, M.Neupane, G.Bian, N.Alidoust, T. R.Chang, H. T.Jeng, C. Y.Huang, W. F.Tsai, H.Lin, P. P.Shiaayev, F. C.Chou, R. J.Cava, M. Z.Hasan, Science2015, 347, 294.
[20] Z. Y.Li, Z.Yi, T. T.Liu, X. F.Chen, F. S.Zheng, J. G.Zhang, H. L.Li, P. H.Wu, P. G.Yan, Phys. Chem. Chem. Phys.2021, 23, 17374.
[21] Z. Y.Li, Y. T.Yi, D. Y.Xu, H.Yang, Z.Yi, X. F.Chen, Y. H.Yi, J. G.Zhang, P. H.Wu, Chin. Phys. B2021, 30, 098102.
[22] Y. Q.Wang, Y. T.Yi, D. Y.Xu, Z.Yi, Z. Y.Li, X. F.Chen, J. L.Huge, J. G.Zhang, L. C.Zeng, G. F.Li, Physica E2021, 131, 114750.
[23] Y. H.Yang, Y.Yamagami, X. B.Yu, P.Pitchappa, B. L.Zhang, M.Fujita, T.Nagatsuma, R.Singh, Nat. Photonics2020, 14, 446.
[24] B.Wang, X.Zhang, F. J.Garcia‐Vidal, X. C.Yuan, J. H.Teng, Phys. Rev. Lett.2012, 109, 073901.
[25] I. O.Nedoliuk, S.Hu, A. K.Geim, A. B.Kuzmenko, Nat. Nanotechnol.2019, 14, 756.
[26] Z. K.Liu, B.Zhou, Y.Zhang, Z. J.Wang, H. M.Weng, D.Prabhakaran, S. K.Mo, Z. X.Shen, Z.Fang, X.Dai, Z.Hussain, Y. L.Chen, Science2014, 343, 864.
[27] Z. K.Liu, J.Jiang, B.Zhou, Z. J.Wang, Y.Zhang, H. M.Weng, D.Prabhakaran, S. K.Mo, H.Peng, P.Dudin, T.Kim, M.Hoesch, Z.Fang, X.Dai, Z. X.Shen, D. L.Feng, Z.Hussain, Y. L.Chen, Nat. Mater.2014, 13, 677.
[28] H.Xiong, D.Li, H. Q.Zhang, Opt. Laser Technol.2021, 143, 107274.
[29] H.Xiong, Y. H.Peng, F.Yang, Z. J.Yang, Z. N.Wang, Opt. Express2020, 28, 15744.
[30] H.Xiong, Q.Shen, Nanoscale2020, 12, 14598.
[31] W. J.Zhang, Y. K.Yang, P.Suo, W. Y.Zhao, J. J.Guo, Q.Lu, X.Lin, Z. M.Jin, L.Wang, G.Chen, F. X.Xiu, W. M.Liu, C.Zhang, G. H.Ma, Appl. Phys. Lett.2019, 114, 221102.
[32] S. A.Mikhailov, K.Ziegler, Phys. Rev. Lett.2007, 99, 016803.
[33] Z. L.Lu, W. S.Zhao, J. Opt. Soc. Am. B2012, 29, 1490.
[34] S.Roy, P. C.Subramaniam, Opt. Lett.1992, 17, 911.
[35] M.Bordag, I. G.Pirozhenko, Phys. Rev. B2014, 89, 035421.
[36] X. Y.He, J.Tao, B.Meng, Nanotechnology2013, 24, 345203.
[37] M.Jablan, H.Buljan, M.Soljacic, Opt. Express2011, 19, 11236.
[38] M. Y.Musa, M.Renuka, X.Lin, R. J.Li, H. P.Wang, E. P.Li, B. L.Zhang, H. S.Chen, 2D Mater.2018, 5, 015018.
[39] D.Drosdoff, A. D.Phan, L. M.Woods, Adv. Opt. Mater.2014, 2, 1038.
[40] Y. V.Bludov, D. A.Smirnova, Y. S.Kivshar, N. M. R.Peres, M. I.Vasilevskiy, Phys. Rev. B2014, 89, 035406.
[41] T.Timusk, J. P.Carbotte, C. C.Homes, D. N.Basov, Phys. Rev. B2016, 93, 235417.
[42] C. J.Tabert, J. P.Carbotte, E. J.Nicol, Phys. Rev. B2016, 93, 085426.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.