×

Hybrid dispersion Dirac semimetal and hybrid Weyl phases in Luttinger semimetals: a dynamical approach. (English) Zbl 07762255

Summary: It is shown that hybrid Dirac and Weyl semimetals can be realized in a 3D Luttinger semimetal with quadratic band touching (QBT). This is illustrated using a periodic kicking scheme. In particular, the focus is on a momentum-dependent driving (nonuniform driving) and the realization of various hybrid Dirac and Weyl semimetals is demonstrated. A unique hybrid dispersion Dirac semimetal with two nodes is identified, where one of the nodes is linear while the other is dispersed quadratically. Next, it is shown that by tilting QBT via periodic driving and in the presence of an external magnetic field, one can realize various single/double hybrid Weyl semimetals depending on the strength of external field. Finally, it is noted that in principle, phases that are found in this work can also be realized by employing the appropriate electronic interactions.
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

MSC:

82D35 Statistical mechanics of metals

References:

[1] C. K.Chiu, J. C. Y.Teo, A. P.Schnyder, S.Ryu, Rev. Mod. Phys.2016, 88, 035005.
[2] N. P.Armitage, E. J.Mele, A.Vishwanath, Rev. Mod. Phys.2018, 90, 015001.
[3] C.Fang, M. J.Gilbert, X.Dai, B. A.Bernevig, Phys. Rev. Lett.2012, 108, 266802.
[4] S. M.Huang, S. Y.Xu, I.Belopolski, C. C.Lee, G.Chang, T. R.Chang, B.Wang, N.Alidoust, G.Bian, M.Neupane, D.Sanchez, H.Zheng, H. T.Jeng, A.Bansil, T.Neupert, H.Lin, M. Z.Hasan, Proc. Natl. Acad. Sci. USA2016, 113, 1180.
[5] A. A.Soluyanov, D.Gresch, Z.Wang, Q.Wu, M.Troyer, X.Dai, B. A.Bernevig, Nature2015, 527, 495.
[6] Y.Xu, F.Zhang, C.Zhang, Phys. Rev. Lett.2015, 115, 265304.
[7] F. Y.Li, X.Luo, X.Dai, Y.Yu, F.Zhang, G.Chen, Phys. Rev. B2016, 94, 121105.
[8] X.Wan, A. M.Turner, A.Vishwanath, S. Y.Savrasov, Phys. Rev. B2011, 83, 205101.
[9] T.Kondo, M.Nakayama, R.Chen, J. J.Ishikawa, E. G.Moon, T.Yamamoto, Y.Ota, W.Malaeb, H.Kanai, Y.Nakashima, Y.Ishida, R.Yoshida, H.Yamamoto, M.Matsunami, S.Kimura, N.Inami, K.Ono, H.Kumigashira, S.Nakatsuji, L.Balents, S.Shin, Nat. Commun.2015, 6, 10042.
[10] M.Nakayama, T.Kondo, Z.Tian, J. J.Ishikawa, M.Halim, C.Bareille, W.Malaeb, K.Kuroda, T.Tomita, S.Ideta, K.Tanaka, M.Matsunami, S.Kimura, N.Inami, K.Ono, H.Kumigashira, L.Balents, S.Nakatsuji, S.Shin, Phys. Rev. Lett.2016, 117, 056403.
[11] P.Goswami, B.Roy, S. DasSarma, Phys. Rev. B2017, 95, 085120.
[12] B.Cheng, T.Ohtsuki, D.Chaudhuri, S.Nakatsuji, M.Lippmaa, N. P.Armitage, Nat. Commun.2017, 8, 2097.
[13] H.Lin, L. A.Wray, Y.Xia, S.Xu, S.Jia, R. J.Cava, A.Bansil, M. Z.Hasan, Nat. Mater.2010, 9, 546.
[14] J.Yu, B.Yan, C. X.Liu, Phys. Rev. B2017, 95, 235158.
[15] P. Y.Yu, M.Cardona, Fundamentals of Semiconductors, Springer, Heidelberg1996. · Zbl 0832.00008
[16] R.Dornhaus, G.Nimtz, B.Schlicht, Narrow‐Gap Semicounductors, Springer‐Verlag, Berlin1983.
[17] E. G.Moon, C.Xu, Y. B.Kim, L.Balents, Phys. Rev. Lett.2013, 111, 206401.
[18] J.Ruan, S. K.Jian, H.Yao, H.Zhang, S. C.Zhang, D.Xing, Nat. Commun.2016, 7.
[19] I. F.Herbut, L.Janssen, Phys. Rev. Lett.2014, 113, 106401.
[20] S.Groves, W.Paul, Phys. Rev. Lett.1963, 11, 194.
[21] B. J.Roman, A. W.Ewald, Phys. Rev. B1972, 5, 3914.
[22] I.Boettcher, Phys. Rev. B2019, 99, 125146.
[23] I.Mandal, Ann. Phys.2019, 406, 173. · Zbl 1423.82034
[24] X. P.Yao, G.Chen, Phys. Rev. X2018, 8, 041039.
[25] A.Mauri, M.Polini, Phys. Rev. B2019, 100, 165115.
[26] S.Tchoumakov, W.Witczak‐Krempa, Phys. Rev. B2019, 100, 075104.
[27] W.Witczak‐Krempa, G.Chen, Y. B.Kim, L.Balents, Annu. Rev. Condens. Matter Phys.2014, 5, 57.
[28] B.Roy, S. A. A.Ghorashi, M. S.Foster, A. H.Nevidomskyy, Phys. Rev. B2019, 99, 054505.
[29] S. A. A.Ghorashi, S.Davis, M. S.Foster, Phys. Rev. B2017, 95, 144503.
[30] S. A. A.Ghorashi, Y.Liao, M. S.Foster, Phys. Rev. Lett.2018, 121, 016802.
[31] S. A. A.Ghorashi, M. S.Foster. arXiv:1903.11086, 2019.
[32] T.Kawakami, T.Okamura, S.Kobayashi, M.Sato, Phys. Rev. X2018, 8, 041026.
[33] I.Boettcher, I. F.Herbut, Phys. Rev. B2017, 95, 075149.
[34] Q. Z.Wang, J.Yu, C. X.Liu, Phys. Rev. B2018, 97, 224507.
[35] I.Boettcher, I. F.Herbut, Phys. Rev. Lett.2018, 120, 057002.
[36] A.Szabo, R.Moessner, B.Roy, arXiv:1811.12415, 2018.
[37] N.Xu, Z. W.Wang, A.Magrez, P.Bugnon, H.Berger, C. E.Matt, V. N.Strocov, N. C.Plumb, M.Radovic, E.Pomjakushina, K.Conder, J. H.Dil, J.Mesot, R.Yu, H.Ding, M.Shi, Phys. Rev. Lett.2018, 121, 136401.
[38] C.Chen, S. S.Wang, L.Liu, Z. M.Yu, X. L.Sheng, Z.Chen, S. A.Yang, Phys. Rev. Materials2017, 1, 044201.
[39] X.Kong, J.He, Y.Liang, S. P.Kou, Phys. Rev. A2017, 95, 033629.
[40] M.Zhang, Z.Yang, G.Wang, J. Phys. Chem. C2018, 122, 3533.
[41] P.Tang, Q.Zhou, S. C.Zhang, Phys. Rev. Lett.2017, 119, 206402.
[42] D.Zhang, H.Wang, J.Ruan, G.Yao, H.Zhang, Phys. Rev. B2018, 97, 195139.
[43] S. A. A.Ghorashi, P.Hosur, C. S.Ting, Phys. Rev. B2018, 97, 205402.
[44] T.Oka, S.Kitamura, Annu. Rev. Condens. Matter Phys.2019, 10, 387.
[45] T.Kitagawa, E.Berg, M.Rudner, E.Demler, Phys. Rev. B2010, 82, 235114.
[46] T.Kitagawa, T.Oka, A.Brataas, L.Fu, E.Demler, Phys. Rev. B2011, 84, 235108.
[47] N.Goldman, J.Dalibard, Phys. Rev. X2014, 4, 031027.
[48] H.Hübener, M. A.Sentef, U.De Giovannini, A. F.Kemper, A.Rubio, Nat. Commun.2017, 8, 13940.
[49] C. K.Chan, Y. T.Oh, J. H.Han, P. A.Lee, Phys. Rev. B2016, 94, 121106.
[50] X. X.Zhang, T. T.Ong, N.Nagaosa, Phys. Rev. B2016, 94, 235137.
[51] J. Y.Zou, B. G.Liu, Phys. Rev. B2016, 93, 205435.
[52] Z.Yan, Z.Wang, Phys. Rev. Lett.2016, 117, 087402.
[53] Z.Yan, Z.Wang, Phys. Rev. B2017, 96, 041206.
[54] M.Ezawa, Phys. Rev. B2017, 96, 041205.
[55] P.Goswami, B.Roy, S. DasSarma, Phys. Rev. B2017, 95, 085120.
[56] T.Oh, H.Ishizuka, B. J.Yang, Phys. Rev. B2018, 98, 144409.
[57] J. N.Bandyopadhyay, T. GuhaSarkar, Phys. Rev. E2015, 91, 032923.
[58] W.Yang, Y.Li, C.Wu, Phys. Rev. Lett.2016, 117, 075301.
[59] S.Chadov, X.Qi, J.Kübler, G. H.Fecher, C.Felser, S. C.Zhang, Nat. Mater.2010, 9, 541.
[60] H.Lin, L. A.Wray, Y.Xia, S.Xu, S.Jia, R. J.Cava, A.Bansil, M. Z.Hasan, Nat. Mater.2010, 9, 546.
[61] D.Xiao, Y.Yao, W.Feng, J.Wen, W.Zhu, X. Q.Chen, G. M.Stocks, Z.Zhang, Phys. Rev. Lett.2010, 105, 096404.
[62] Z.Zhu, Y.Liu, Z. M.Yu, S. S.Wang, Y. X.Zhao, Y.Feng, X. L.Sheng, S. A.Yang, Phys. Rev. B2018, 98, 125104.
[63] J. W.Rhim, Y. B.Kim, Phys. Rev. B2015, 91, 115124.
[64] P.Roman‐Taboada, G. G.Naumis, Phys. Rev. B2017, 95, 115440.
[65] P.Roman‐Taboada, G. G.Naumis, Phys. Rev. B2017, 96, 155435.
[66] A.Agarwala, U.Bhattacharya, A.Dutta, D.Sen, Phys. Rev. B2016, 93, 174301.
[67] J.Walowski, M.Münzenberg, J. Appl. Phys.2016, 120, 140901.
[68] K.Sun, W. V.Liu, A.Hemmerich, S. DasSarma, Nat. Phys.2012, 8, 67.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.