×

Darwinian standard model of physics obtains general relativity. (English) Zbl 1508.81495

Summary: A Darwinian perspective of the standard model of physics (SMP) quantum fields (QFs) is proposed, called the physics-cell (PC) approach. Because Darwinian evolution is not deterministic, the PC approach allows for the violation of the charge-parity-time symmetry. In the PC approach, the SMP laws are contained in the PCs which receive and emit QFs through the PCs’ outer surface which is necessarily constrained by Bekenstein’s surface-information limit. The establishment of gauge invariance-compatible communication protocol-agreements between the PCs obtains an average correlation of QFs that is equivalent to an asymmetric metric tensor with the symmetric component being equivalent to general relativity and the anti-symmetric component being very small but still large enough to allow for enough ex-nihilo mass-creation to explain dark matter. Based on experimental data, the PC minimum-size is \(1.5\cdot10^{-31}\) m which is similar to the scale at which the grand unified theory force convergence occurs. Plus, the cosmological constant energy density is equal to the energy density of the discreteness-correction QF alterations that constitute the dark energy and are caused by the finiteness of the PC time-step which equals \(5.0\cdot10^{-40}\) s, hence obtaining a PC maximum information processing rate of \(6.6\cdot10^{47}\) qubit/s. Moreover, the PC approach obtains that the minimum mass for black holes is \(2.1\cdot10^9\) larger than the maximum mass for which the no-hiding theorem can apply and that the maximum capacity for quantum computers is about \(29.0\cdot10^{12}\) qubit.

MSC:

81P68 Quantum computation
81P05 General and philosophical questions in quantum theory
83C99 General relativity
83F05 Relativistic cosmology

References:

[1] Abutaleb, AA, Discreteness of curved spacetime from GUP, Adv. High Energy Phys., 2013, 124543 (2013) · Zbl 1328.81243
[2] Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, JC; Barends, R.; Biswas, R.; Boixo, S.; Brandao, FGSL; Buell, DA; Burkett, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Collins, R.; Courtney, W.; Dunsworth, A.; Farhi, E.; Foxen, B.; Fowler, A.; Gidney, C.; Giustina, M.; Graff, R.; Guerin, K.; Habegger, S.; Harrigan, MP; Hartmann, MJ; Ho, A.; Hoffmann, M.; Huang, T.; Humble, TS; Isakov, SV; Jeffrey, E.; Jiang, Z.; Kafri, D.; Kechedzhi, K.; Kelly, J.; Klimov, PV; Knysh, S.; Korotkov, A.; Kostritsa, F.; Landhuis, D.; Lindmark, M.; Lucero, E.; Lyakh, D.; Mandra, S.; McClean, JR; McEwen, M.; Megrant, A.; Mi, X.; Michielsen, K.; Mohseni, M.; Mutus, J.; Naaman, O.; Neeley, M.; Neill, C.; Niu, MY; Ostby, E.; Petukhov, A.; Platt, JC; Quintana, C.; Rieffel, EG; Roushan, P.; Rubin, NC; Dl, Sank; Satzinger, KJ; Smelyanskiy, V.; Sung, KJ; Trevithick, MD; Vainsencher, A.; Villalonga, B.; White, T.; Yao, ZJ; Yeh, P.; Zalcman, A.; Neven, H.; Martinis, JM, Quantum supremacy using a programmable superconducting processor, Nature, 574, 505-511 (2019)
[3] Ashtekar, A., Bianchi, E.: A short review of loop quantum gravity. Reports on Progress in Physics, 84(4) (2021)
[4] Bekenstein, JD, Universal upper bound on the entropy-to-energy ratio for bounded systems, Phys. Rev. D, 23, 2, 287-298 (1981)
[5] Bekenstein, JD, Bekenstein bound, Scholarpedia, 3, 10, 7374 (2008)
[6] Bohr, N., The quantum postulate and the recent development of atomic theory, Nature, 121, 580-590 (1928) · JFM 54.1006.01
[7] Borsanyi, S.; Fodor, Z.; Guenther, JN; Hoelbling, C.; Katz, SD; Lellouch, L.; Lippert, T.; Miura, K.; Parato, L.; Szabo, KK; Stokes, F.; Toth, BC; Torok, C.; Varnhorst, L., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature, 593, 7857, 51-55 (2021)
[8] Braunstein, SL; Pati, AK, Quantum information cannot be completely hidden in correlations: implications for the black-hole information paradox, Phys. Rev., 98, 080502 (2007) · Zbl 1228.83062
[9] Byrnes, T., Simulating lattice gauge theories on a quantum computer, Phys. Rev. A, 73, 022328 (2006)
[10] Calcagni, G., Papantonopoulos, L., Siopsis, G., Tsamis, N.: (Eds.). Quantum Gravity and Quantum Cosmology. Lecture Notes in Physics, 863. Springer-Verlag (2013) · Zbl 1254.83004
[11] Castro, C., Generalized uncertainty relations, curved phase-spaces and quantum gravity, J. Appl. Math. Phys., 4, 1870-1878 (2016)
[12] Carroll, S.M.: The cosmological constant. (extracted on: 15 July 2019). IN: https://ned.ipac.caltech.edu/level5/Carroll2/frames.html (2019)
[13] Cartan, E., Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion, C. R. Acad. Sci. (Paris), 174, 593-595 (1922) · JFM 48.0854.02
[14] Casadio, R.; Scardigli, F., Generalized uncertainty principle, classical mechanics, and general relativity, Phys. Lett. B, 807, 135558 (2020) · Zbl 1473.81089
[15] Chaitin, G.J.: Meta Math!: The Quest for Omega. Vintage (2006) · Zbl 1334.00001
[16] Comer, D.E.: Internetworking with TCP/IP - Principles, Protocols and Architecture (4th ed.). Prentice Hall (2000) · Zbl 0827.68003
[17] Debever, R., Elie Cartan-Albert Einstein, letters on absolute parallelism (1979), Princeton: Princeton University Press, Princeton
[18] Dreyer, O.: Emergent General Relativity, arXiv:gr-qc/0604075 (2006)
[19] Di Paolo, C.; Salucci, P.; Fontaine, JP, The radial acceleration relation (RAR): crucial cases of dwarf disks and low-surface-brightness galaxies, Astrophys. J., 873, 106 (2019)
[20] Gyongyosi, L.; Nguyen, HV, A survey on quantum channel capacities, IEEE Commun. Surv. Tutor., 99, 1 (2018)
[21] Hajdukovic, DS, Quantum vacuum and virtual gravitational dipoles: the solution to the dark energy problem?, Astrophys. Space Sci., 339, 1, 1-5 (2012) · Zbl 1255.83146
[22] Hawking, SW, Black hole explosions?, Nature, 248, 30-31 (1974) · Zbl 1370.83053
[23] Heisenberg, W., ��ber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Zeitschrift für Physik, 43, 3-4, 172-198 (1927) · JFM 53.0853.05
[24] Hehl, FW; Von Der Heyde, P.; Kerlick, GD; Nester, JM, General relativity with spin and torsion: foundations and prospects, Rev. Mod. Phys., 48, 393-416 (1976) · Zbl 1371.83017
[25] Jensen, S.B.: General relativity with torsion : extending wald’s chapter on curvature. IN: http://www.slimy.com/ steuard/teaching/tutorials/GRtorsion.pdf (2005)
[26] Ji, Z., Natarajan, A., Vidick, T., Wright, J., Yuen, H.: MIP*=RE. IN: arxiv:2001.04383v1 [quant-ph] (2020)
[27] Kastner, R.E., Kauffman, S.: Are Dark Energy and Dark Matter Different Aspects of the Same Physical Process?. Front. Phys., 13 (2018)
[28] Kempf, A.; Mangano, G.; Mann, RB, Hilbert-space representation of the minimal length uncertainty relation, Phys. Rev. D, 52, 1108 (1995)
[29] Kokkotas, KD, Gravitational wave physics. Encyclopedia of physical science and technology (2002), Cambridge: Academic Press, Cambridge
[30] Kolb, EW; Turner, MS, The Early Universe (1994), Boston: Addison-Wesley, Boston
[31] Komatsu, E.; Smith, K.; Dunkley, J.; Bennett, C.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Nolta, M.; Page, L.; Spergel, D.; Halpern, M.; Hill, R.; Kogut, A.; Limon, M.; Meyer, S.; Odegard, N.; Tucker, G.; Weiland, J.; Wollack, EJ; Wright, EL, Seven-year Wilkinson microwave anisotropy probe (WMAP *) observations: cosmological interpretation, Astrophys. J. Suppl. Series, 192, 18 (2011)
[32] Kong, J.; Jiménez-Martıinez, R.; Troulinou, C.; Lucivero, VG; Tóth, G.; Mitchell, MW, Measurement-induced, spatially-extended entanglement in a hot, strongly-interacting atomic system, Nat. Commun. (2020) · doi:10.1038/s41467-02015899-1
[33] Linde, A., Particle physics and inflationary cosmology, Contemp. Concept. Phys., 5, 1-362 (2005)
[34] Lloyd, S., Ultimate physical limits to computation, Nature, 406, 1047-1054 (2000)
[35] Lloyd, S., Computational capacity of the universe, Phys. Rev. Lett., 88, 237901 (2002)
[36] Lori, NF; Blin, A., Application of Quantum Darwinism to cosmic inflation: an example of the limits imposed in Aristotelian logic by information-based approach to Gödel’s incompleteness, Found. Sci., 15, 2, 199-207 (2010) · Zbl 1201.83050
[37] Lori, NF; Neves, J.; Alves, V., Some considerations in quantum computing at subatomic scales and its impact in the future of Moore’s law, Quant. Inf. Comput., 20, 1-2, 1-13 (2020)
[38] Lori, N.; Neves, J.; Machado, J., Quantum field theory representation in quantum computation, Appl. Sci., 11, 23, 11272 (2021)
[39] Margolus, N.; Levitin, LB, The maximum speed of dynamical evolution, Phys. D, 120, 188-195 (1998)
[40] Martin, J., Everything You Always Wanted To Know About The Cosmological Constant Problem (But Were Afraid To Ask), Comptes Rendus Phys, 13, 6-7, 566-665 (2012)
[41] McQuarrie, DA, Statistical Mechanics (1975), New York: Harper & Row, New York · Zbl 1137.82301
[42] Misner, CW; Thorne, KS; Wheeler, JA, Gravitation (2017), Princeton: Princeton University Press, Princeton · Zbl 1375.83002
[43] Mukhi, S.: String theory: a perspective over the last 25 years. Classical and Quantum Gravity, Vol 28, 15 (2011) · Zbl 1222.83003
[44] Natterer, FD; Yang, K.; Paul, W.; Willke, P.; Choi, T.; Greber, T.; Heinrich, AJ; Lutz, CP, Reading and writing single-atom magnets, Nature, 543, 226-8 (2017)
[45] Nowak, MA; Ohtsuki, H., Prevolutionary dynamics and the origin of evolution, PNAS, 105, 39, 14924-7 (2008)
[46] Nyquist, H., Certain topics in telegraph transmission theory, Trans. AIEEE, 47, 2, 617-644 (1928)
[47] Peskin, ME; Schroeder, DV, An Introduction to Quantum Field Theory (Frontiers in Physics) (1995), Boulder: Westview Press, Boulder
[48] Prum, R.O.: The Evolution of Beauty. Anchor Books (2017)
[49] Rosen, N.; Vallarta, MS, Relativity and the Uncertainty Principle, Phys. Rev., 40, 569-577 (1932) · Zbl 0004.37905
[50] Rovelli, C.: The strange equation of quantum gravity. Classical and Quantum Gravity, 32, 124005. Cambridge University Press (2015) · Zbl 1320.83011
[51] Sakurai, JJ, Modern Quantum Mechanics (1994), New York: Addison-Wesley, New York
[52] Shannon, CE, Communication in the presence of noise, Proc Inst. Radio Eng., 37, 1, 10-21 (1949)
[53] Smerlak, M., Youssef, A.: Limiting fitness distributions in evolutionary dynamics. arXiv: 1511.00296v2 [q-bio.PE] 16 Feb 2016 (2016) · Zbl 1368.92125
[54] Smolin, L.: An invitation to loop quantum gravity. arXiv: hep-th/0408048v3 [hep-th] 28 Jun 2015 (2005)
[55] Veríssimo, PE, Travelling through Wormholes: a new look at distribut-ed systems models, ACM SIGACT News Distrib. Comput. Column, 37, 1, 66-81 (2006)
[56] Wald, RM, General Relativity (1984), Chicago: University of Chicago Press, Chicago · Zbl 0549.53001
[57] Whitaker, ET, On the functions which are represented by the expansion of the interpolation theory, Proc. Royal Soc. Edinburgh, 35, 181-194 (1915) · JFM 45.1275.02
[58] Wolchover, N.: The Particle That Broke a Cosmic Speed Limit. Quanta Magazine. 14 May(2015)
[59] Yesiltas, Ö., Dirac equation in the curved spacetime and generalized uncertainty principle: A fundamental quantum mechanical approach with energy-dependent potential, Eur. Phys. J. Plus, 134, 7, 331 (2019)
[60] Yuen, H.: The shape of MIP*=RE. Quantum Frontiers. IN: quantumfrontiers.com/2020/03/01/the-shape-of-mip-re/ (2020)
[61] Zee, A., Quantum Field Theory in a Nutshell (2010), Princeton: Princeton University Press, Princeton · Zbl 1277.81001
[62] Zurek, WH, Decoherence, einselection, and the quantum origins of the classical, Rev. Mod. Phys., 75, 715-774 (2003) · Zbl 1205.81031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.