×

Non-Archimedean replicator dynamics and Eigen’s paradox. (English) Zbl 1411.92228

Summary: We present a new non-Archimedean model of evolutionary dynamics, in which the genomes are represented by \(p\)-adic numbers. In this model the genomes have a variable length, not necessarily bounded, in contrast with the classical models where the length is fixed. The time evolution of the concentration of a given genome is controlled by a \(p\)-adic evolution equation. This equation depends on a fitness function \(f\) and on mutation measure \(Q\). By choosing a mutation measure of Gibbs type, and by using a \(p\)-adic version of the Maynard Smith ansatz, we show the existence of threshold function \(M_c(f,Q)\), such that the long term survival of a genome requires that its length grows faster than \(M_c(f,Q)\). This implies that Eigen’s paradox does not occur if the complexity of genomes grows at the right pace. About twenty years ago, Scheuring and Poole, Jeffares and Penny proposed a hypothesis to explain Eigen’s paradox. Our mathematical model shows that this biological hypothesis is feasible, but it requires \(p\)-adic analysis instead of real analysis. More exactly, the Darwin-Eigen cycle proposed by A. Poole et al. [BioEssays, 21, 880–889, (1999)] takes place if the length of the genomes exceeds \(M_c(f,Q)\).

MSC:

92D15 Problems related to evolution
11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.)
35S10 Initial value problems for PDEs with pseudodifferential operators

References:

[1] Albeverio, S.; Khrennikov, A. Yu; Shelkovich, V. M., Theory of p-adic Distributions: Linear and Nonlinear Models, (2010), Cambridge: Cambridge University Press, Cambridge · Zbl 1198.46001
[2] Andreu-Vaillo, F.; Mazón, J. M.; Rossi, J. D.; Toledo-Melero, J. J., Nonlocal Diffusion Problems, (2010), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1214.45002
[3] Asano, M.; Ohya, M.; Tanaka, Y.; Basieva, I.; Khrennikov, A., Quantum-like model of brain’s functioning: decision making from decoherence, J. Theor. Biol., 281, 56-64, (2011) · Zbl 1397.91098 · doi:10.1016/j.jtbi.2011.04.022
[4] Avetisov, V. A.; Bikulov, A. Kh; Osipov, V. A., p-adic description of characteristic relaxation in complex systems, J. Phys. A: Math. Gen., 36, 4239-4246, (2003) · Zbl 1049.82051 · doi:10.1088/0305-4470/36/15/301
[5] Avetisov, V. A.; Bikulov, A. H.; Kozyrev, S. V.; Osipov, V. A., p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes, J. Phys. A: Math. Gen., 35, 177-189, (2002) · Zbl 1038.82077 · doi:10.1088/0305-4470/35/2/301
[6] Avetisov, V. A.; Bikulov, A. H.; Kozyrev, S. V., Application of p-adic analysis to models of breaking of replica symmetry, J. Phys. A: Math. Gen., 32, 8785-8791, (1999) · Zbl 0957.82034 · doi:10.1088/0305-4470/32/50/301
[7] Avetisov, V. A.; Zhuravlev Yu, N., An evolutionary interpretation of a p-adic equation of ultrametric diffusion, Dokl. Math., 75, 453-455, (2007) · Zbl 1162.35074 · doi:10.1134/S1064562407030325
[8] Avetisov, V. A.; Zhuravlev Yu, N.; Dobretsov, N., Hierarchical scale-free representation of biological realm—its origin and evolution, Biosphere Origin and Evolution, 69-88, (2008), New York: Springer, New York
[9] Becker, O. M.; Karplus, M., The topology of multidimensional protein energy surfaces: theory and application to peptide structure and kinetics, J. Chem. Phys., 106, 1495-1517, (1997) · doi:10.1063/1.473299
[10] Dragovich, B.; Khrennikov, A. Yu; Kozyrev, S. V.; Volovich, I. V., On p-adic mathematical physics, p-adic Numbers Ultrametric Anal. Appl., 1, 1-17, (2009) · Zbl 1187.81004 · doi:10.1134/S2070046609010014
[11] Dragovich, B.; Dragovich, A. Yu, A p-adic model of DNA sequence and genetic code, p-adic Numbers Ultrametric Anal. Appl., 1, 34-41, (2009) · Zbl 1187.92039 · doi:10.1134/S2070046609010038
[12] Dubischar, D.; Gundlach, V. M.; Steinkamp, O.; Khrennikov, A., A p-adic model for the process of thinking disturbed by physiological and information noise, J. Theor. Biol., 197, 451-467, (1999) · doi:10.1006/jtbi.1998.0887
[13] Eigen, M., Selforganization of matter and the evolution of biological macromolecules, Naturwissenschaften, 58, 465-523, (1971) · doi:10.1007/BF00623322
[14] Eigen, M.; McCaskill, J.; Schuster, P., Molecular quasi-species, J. Phys. Chem., 92, 6881-6891, (1988) · doi:10.1021/j100335a010
[15] Frauenfelder, H.; Chan, S. S.; Chan, W. S., The Physics of Proteins, (2010), New York: Springer, New York
[16] Halmos, P. R., Measure Theor, (1950), New York: Van Nostrand Reinhold Co., New York · Zbl 0040.16802
[17] Holly, J. E., Pictures of ultrametric spaces, the p-adic numbers, and valued fields, Am. Math. Mon., 108, 721-728, (2001) · Zbl 1039.12003 · doi:10.1080/00029890.2001.11919803
[18] James, K. D.; Ellington, A. D., The fidelity of template-directed oligonucleotide ligation and the inevitability of polymerase function, Orig. Life Evol. Biosph., 29, 375-390, (1999) · doi:10.1023/A:1006544611320
[19] Kochubei, A. N., Pseudo-Differential Equations and Stochastics Over Non-Archimedean Fields, (2001), Basel: Marcel Dekker, Basel · Zbl 0984.11063
[20] Khrennikov, A. Yu, Modelling of psychological behavior on the basis of ultrametric mental space: encoding of categories by balls, p-adic Numbers Ultrametric Anal. Appl., 2, 1-20, (2010) · Zbl 1260.91221 · doi:10.1134/S2070046610010012
[21] Khrennikov, A., Probabilistic pathway representation of cognitive information, J. Theor. Biol., 231, 597-613, (2004) · Zbl 1465.92004 · doi:10.1016/j.jtbi.2004.07.015
[22] Khrennikov, A., p-adic discrete dynamical systems and their applications in physics and cognitive sciences, Russ. J. Math. Phys., 11, 45-70, (2004) · Zbl 1179.37125
[23] Khrennikov, A., Information Dynamics in Cognitive, Psychological, Social and Anomalous Phenomena, (2004), Dordrecht: Kluwer, Dordrecht · Zbl 1175.91151
[24] Khrennikov, A., Human subconscious as a p-adic dynamical system, J. Theor. Biol., 193, 179-196, (1998) · doi:10.1006/jtbi.1997.0604
[25] Khrennikov, A., Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, (1997), Dordrecht: Kluwer, Dordrecht · Zbl 0920.11087
[26] Khrennikov, A. Yu; Kozyrev, S. V., Genetic code and deformation of the 2-dimensional 2-adic metric, p-adic Numbers Ultrametric Anal. Appl., 3, 165-168, (2011) · Zbl 1253.92040 · doi:10.1134/S2070046611020087
[27] Khrennikov, A. Yu; Kozyrev, S. V., Genetic code on the dyadic plane, Physica A, 381, 265-272, (2007) · doi:10.1016/j.physa.2007.03.018
[28] Khrennikov, A.; Kozyrev, S.; Zúñiga-Galindo, W. A., Ultrametric Equations and its Applications, (2018), Cambridge: Cambridge University Press, Cambridge · Zbl 1397.35350
[29] Koblitz, N., p-Adic Numbers, p-Adic Analysis, and Zeta-Functions, (1984), New York: Springer, New York
[30] Kozyrev, S. V., Methods and applications of ultrametric and p-adic analysis: from wavelet theory to biophysics, 274, 1-84, (2011) · Zbl 1298.42038
[31] Kozyrev, S. V.; Khrennikov, A. Yu, Replica procedure for probabilistic algorithms as a model of gene duplication, Dokl. Akad. Nauk, 440, 28-31, (2011) · Zbl 1317.92053
[32] Leuthäusser, I., An exact correspondence between Eigen’s evolution model and a two-dimensional Ising system, J. Chem. Phys., 84, 1884-1885, (1986) · doi:10.1063/1.450436
[33] Liò, P.; Goldman, N., Models of molecular evolution and phylogeny, Genome Res., 8, 1233-1244, (1998) · doi:10.1101/gr.8.12.1233
[34] Mézard, M.; Parisi, G.; Virasoro, M. A., Spin Glass Theory and Beyond, (1987), Singapore: World Scientific, Singapore · Zbl 0992.82500
[35] Nowak, M. A., Evolutionary Dynamics. Exploring the Equations of Life, (2006), Cambridge, MA: Harvard University Press, Cambridge, MA · Zbl 1115.92047
[36] Park, J. M.; Deem, M. W., Schwinger boson formulation and solution of the Crow-Kimura and Eigen models of quasispecies theory, J. Stat. Phys., 125, 975-1015, (2006) · Zbl 1119.82030 · doi:10.1007/s10955-006-9190-z
[37] Parisi, G.; Sourlas, N., p-adic numbers and replica symmetry breaking, Eur. Phys. J. B, 14, 535-542, (2000) · doi:10.1007/s100510051063
[38] Perthame, B., Parabolic Equations in Biology. Growth, Reaction, Movement and Diffusion, (2015), Cham: Springer, Cham · Zbl 1333.35001
[39] Poole, A.; Jeffares, D.; Penny, D., Early evolution: prokaryotes, the new kids on the block, BioEssays, 21, 880-889, (1999) · doi:10.1002/(SICI)1521-1878(199910)21:10<880::AID-BIES11>3.0.CO;2-P
[40] Rammal, R.; Toulouse, G.; Virasoro, M. A., Ultrametricity for physicists, Rev. Mod. Phys., 58, 765-788, (1986) · doi:10.1103/RevModPhys.58.765
[41] Scheuring, I., Avoiding catch-22 of early evolution by stepwise increase in copying fidelity, Selection, 1, 13-23, (2000)
[42] Smith, J. M., Models of evolution, Proc. R. Soc. B, 219, 315-325, (1983) · Zbl 0531.92015 · doi:10.1098/rspb.1983.0076
[43] Saakian, D. B.; Hu, C-K, Exact solution of the Eigen model with general fitness functions and degradation rates, Proc. Natl Acad. Sci. USA, 103, 4935-4939, (2006) · doi:10.1073/pnas.0504924103
[44] Saakian, D.; Hu, C-K, Eigen model as a quantum spin chain: exact dynamics, Phys. Rev. E, 69, 21913-21918, (2004) · doi:10.1103/PhysRevE.69.021913
[45] Saakian, D. B.; Rozanova, O.; Akmetzhanov, A., Dynamics of the Eigen and the Crow-Kimura models for molecular evolution, Phys. Rev. E, 78, 41908-41914, (2008) · doi:10.1103/PhysRevE.78.041908
[46] Schuster, P.; Chalub, F.; Rodrigues, J., The mathematics of Darwin’s theory of evolution: 1859 and 150 years later, The Mathematics of Darwin’s Legacy, 27-66, (2011), New York: Springer, New York · Zbl 1379.92042
[47] Szabó, P.; Scheuring, I.; Czárán, T.; Szathmáry, E., In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity, Nature, 420, 360-363, (2002)
[48] Szathmáry, E., The origin of replicators and reproducers, Phil. Trans. R. Soc. B, 361, 1761-1776, (2006) · doi:10.1098/rstb.2006.1912
[49] Szathmáry, E., The integration of earliest genetic information, Trends Ecol. Evol., 4, 200-204, (1989) · doi:10.1016/0169-5347(89)90073-6
[50] Taibleson, M. H., Fourier Analysis on Local Fields, (1975), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0319.42011
[51] Tannenbaum, E.; Shakhnovich, E. I., Semiconservative replication, genetic repair, and many-gened genomes: extending the quasispecies paradigm to living systems, Phys. Life Rev., 2, 290-317, (2005) · doi:10.1016/j.plrev.2005.08.001
[52] Vladimirov, V. S.; Volovich, I. V.; Zelenov, E. I., p-adic Analysis and Mathematical Physics, (1994), Singapore: World Scientific, Singapore · Zbl 0812.46076
[53] Zúñiga-Galindo, W. A., Non-Archimedean reaction-ultradiffusion equations and complex hierarchic systems, Nonlinearity, 31, 2590-2616, (2018) · Zbl 1397.80009 · doi:10.1088/1361-6544/aab0b6
[54] Zúñiga-Galindo, W. A., Pseudodifferential Equations Over Non-Archimedean Spaces, (2016), Cham: Springer, Cham · Zbl 1367.35006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.