×

A numerical method for a model of two-phase flow in a coupled free flow and porous media system. (English) Zbl 1349.76187

Summary: In this article, we study two-phase fluid flow in coupled free flow and porous media regions. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the porous medium region. We propose a Robin-Robin domain decomposition method for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Numerical examples are presented to illustrate the effectiveness of this method.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
76S05 Flows in porous media; filtration; seepage

Software:

IPARS
Full Text: DOI

References:

[1] Burman, E.; Hansbo, P., A unified stabilized method for Stokes’ and Darcy’s equations, J. Comput. Appl. Math., 198, 35-51 (2007) · Zbl 1101.76032
[2] Layton, W. J.; Schieweck, F.; Yotov, I., Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40, 2002, 2195-2218 (2003) · Zbl 1037.76014
[3] Ervin, V. J.; Jenkins, E. W.; Sun, S., Coupled generalized non-linear stokes flow with flow through a porous medium, SIAM J. Numer. Anal., 47, 2, 929-952 (2009) · Zbl 1279.76032
[4] Ervin, V. J.; Jenkins, E. W.; Sun, S., Coupling nonlinear Stokes and Darcy flow using mortar finite elements, Appl. Numer. Math., 61, 11, 1198-1222 (2011) · Zbl 1276.76040
[5] Girault, V.; Rivière, B.; Wheeler, M. F., A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems, Math. Comput., 74, 53-84 (2005) · Zbl 1057.35029
[6] Quarteroni, A.; Valli, A., Domain Decomposition Methods for Partial Differential Equations, Numerical Mathematics and Scientific Computation (1999), The Clarendon Press Oxford University Press, Oxford Science Publications: The Clarendon Press Oxford University Press, Oxford Science Publications New York · Zbl 0931.65118
[7] Discacciati, M.; Miglio, E.; Quarteroni, A., Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43, 57-74 (2002) · Zbl 1023.76048
[8] Quarteroni, A.; Veneziani, A.; Zunino, P., A domain decomposition method for advection-diffusion processes with application to blood solutes, SIAM J. Sci. Comput., 23, 1959-1980 (2002) · Zbl 1032.76036
[9] Qian, T.; Wang, X. P.; Sheng, P., Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E, 68, 016306 (2003)
[10] Qian, T.; Wang, X. P.; Sheng, P., Molecular hydrodynamics of the moving contact line in two-phase immiscible flows, Commun. Comput. Phys., 1, 1-52 (2006) · Zbl 1115.76079
[11] Luo, X.; Wang, X. P.; Qian, T.; Sheng, P., Moving contact line over undulating surfaces, Solid State Commun., 139, 623-629 (2006)
[12] Wang, X. P.; Qian, T.; Sheng, P., Moving contact line on chemically patterned surfaces, J. Fluid Mech., 605, 59-78 (2008) · Zbl 1145.76045
[13] He, Q.; Glowinski, R.; Wang, X. P., A least squares/finite element method for the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line, J. Comput. Phys., 230, 4991-5009 (2011) · Zbl 1416.76111
[14] Gao, M.; Wang, X. P., A gradient stable scheme for a phase field model for the moving contact line problem, J. Comput. Phys., 231, 1372-1386 (2012) · Zbl 1408.76138
[15] Bao, K.; Shi, Y.; Sun, S.; Wang, X., A finite element method for the numerical solution of the coupled Cahn-Hilliard and Navier-Stokes system for Moving contact line problem, J. Comput. Phys., 231, 8083-8099 (2012) · Zbl 1284.65131
[16] Beavers, G. S.; Joseph, D. D., Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30, 197-207 (1967)
[17] Jäger, W.; Mikelić, A., On the interface boundary condition of Beavers, Joseph, and Saffman, SIAM J. Appl. Math., 60, 1111-1127 (2000) · Zbl 0969.76088
[18] Saffman, P., On the boundary condition at the surface of a porous media, Stud. Appl. Math., 50, 93-101 (1971) · Zbl 0271.76080
[19] Sheldon, J.; Zondek, B.; Cardwell, W., One-dimensional, incompressible, non-capillary, two-phase fluid flow in a porous medium, T. SPE AIME, 216, 290-296 (1959)
[20] Stone, H.; Garder, A., Analysis of gas-cap or dissolved-gas reservoirs, T. SPE AIME, 222, 92-104 (1961)
[21] Chen, Z.; Huan, G.; Li, B., An improved IMPES method for two-phase flow in porous media, Transp. Porous Media, 54, 361-376 (2004)
[22] Lacroix, S.; Vassilevski, Y.; Wheeler, J.; Wheeler, M., Iterative solution methods for modeling multiphase flow in porous media fully implicitly, SIAM J. Sci. Comput., 25, 3, 905-926 (2014) · Zbl 1163.65310
[23] Chen, Z.; Ewing, R., Fluid Flows and Transport in Porous Media: Mathematical and Numerical Treatment, Contemp. Math., vol. 295 (2002), American Mathematical Society
[24] Bastian, Peter, Numerical computation of multiphase flows in porous media (1999), Christian-Albrechts Universität Kiel, Habilitationsschrift
[25] Cao, Y.; Gunzburger, M.; He, X.; Wang, X., Robin-Robin domain decomposition methods for the steady-state Stokes-Darcy system with the Beavers-Joseph interface condition, Numer. Math., 117, 601-629 (2011) · Zbl 1305.76072
[26] Chen, W.; Gunzburger, M.; Hua, F.; Wang, X., A parallel Robin-Robin domain decomposition method for the Stokes-Darcy system, SIAM J. Numer. Anal., 49, 1064-1084 (2011) · Zbl 1414.76017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.