×

The Rayleigh-Taylor instability for the verigin problem with and without phase transition. (English) Zbl 1418.35310

Summary: Isothermal compressible two-phase flows in a capillary are modeled with and without phase transition in the presence of gravity, employing Darcy’s law for the velocity field. It is shown that the resulting systems are thermodynamically consistent in the sense that the available energy is a strict Lyapunov functional. In both cases, the equilibria with flat interface are identified. It is shown that the problems are well-posed in an \(L_p\)-setting and generate local semiflows in the proper state manifolds. The main result concerns the stability of equilibria with flat interface, i.e. the Rayleigh-Taylor instability.

MSC:

35Q35 PDEs in connection with fluid mechanics
76D27 Other free boundary flows; Hele-Shaw flows
76E17 Interfacial stability and instability in hydrodynamic stability
35R37 Moving boundary problems for PDEs
35K59 Quasilinear parabolic equations

References:

[1] Bizhanova, G.I., Solonnikov, V.A.: On problems with free boundaries for second-order parabolic equations. Algebra Anal. 12, 98-139 (2000) [Translation in St. Petersburg Math. J. 12, 949-981 (2000)] · Zbl 0997.35102
[2] Ehrnström, M., Escher, J., Matioc, B.-V.: Steady-state fingering patterns for a periodic Muskat problem. Methods Appl. Anal. 20, 33-46 (2013) · Zbl 1291.34042
[3] Escher, J., Matioc, A.-V., Matioc, B.-V.: A generalized Rayleigh-Taylor condition for the Muskat problem. Nonlinearity 25, 73-92 (2012) · Zbl 1243.35179 · doi:10.1088/0951-7715/25/1/73
[4] Escher, J., Matioc, B.-V.: On the parabolicity of the Muskat problem: well-posedness, fingering, and stability results. Z. Anal. Anwend. 30, 193-218 (2011) · Zbl 1223.35199 · doi:10.4171/ZAA/1431
[5] Escher, J., Matioc, B.-V., Walker, C.: The domain of parabolicity for the Muskat problem. Indiana Univ. Math. J. 67, 679-737 (2018) · Zbl 1402.35318 · doi:10.1512/iumj.2018.67.7263
[6] Frolova, E.V.: Estimates in \[L_p\] Lp for the solution of a model problem corresponding to the Verigin problem. Zap. Nauchn. Sem. S-Petersburg. Otdel. Mat. Inst. Steklov 259, 280-295 (1999) [Translation in J. Math. Sci. (N. Y.)) 109, 2018-2029 (1999)] · Zbl 1153.76425
[7] Frolova, E.V.: Solvability of the Verigin problem in Sobolev spaces. Zap. Nauchn. Sem. S-Petersburg. Otdel. Mat. Inst. Steklov 295, 180-203 (2003) [Translation in J. Math. Sci. (N. Y.) 127, 1923-1935 (2003)] · Zbl 1162.35461
[8] Guo, Y., Tice, I.: Linear Rayleigh-Taylor instability for viscous, compressible fluids. SIAM J. Math. Anal. 42, 1688-1720 (2010) · Zbl 1429.76054 · doi:10.1137/090777438
[9] Jang, J., Tice, I., Wang, Y.: The compressible viscous surface-internal wave problem: nonlinear Rayleigh-Taylor instability. Arch. Ration. Mech. Anal. 221, 215-272 (2016) · Zbl 1342.35253 · doi:10.1007/s00205-015-0960-0
[10] Matioc, B.-V.: Viscous displacement in porous media: the Muskat problem in 2D. Trans. Amer. Math. Soc. 370, 7511-7556 (2018) · Zbl 1403.35333 · doi:10.1090/tran/7287
[11] Meyries, M., Schnaubelt, R.: Interpolation, embeddings and traces of anisotropic fractional Sobolev spaces with temporal weights. J. Funct. Anal. 262, 1200-1229s (2012) · Zbl 1250.46022 · doi:10.1016/j.jfa.2011.11.001
[12] Prüss, J., Simonett, G., Zacher, R.: On convergence of solutions to equilibria for quasilinear parabolic problems. J. Differ. Equ. 246, 3902-3931 (2009) · Zbl 1172.35010 · doi:10.1016/j.jde.2008.10.034
[13] Prüss, J., Simonett, G.: On the Rayleigh-Taylor instability for the two-phase Navier-Stokes equations. Indiana Univ. Math. J. 59, 1853-1871 (2010) · Zbl 1234.35323 · doi:10.1512/iumj.2010.59.4145
[14] Prüss, Jan; Simonett, Gieri, Quasilinear Parabolic Evolution Equations, 195-230 (2016), Cham · Zbl 1435.35004 · doi:10.1007/978-3-319-27698-4_5
[15] Prüss, J., Simonett, G.: On the Muskat problem. Evol. Equ. Control Theory 5, 631-645 (2016) · Zbl 1351.35271 · doi:10.3934/eect.2016022
[16] Prüss, J., Simonett, G.: On the Verigin problem with and without phase transition. Interfaces Free Bound. 20, 107-128 (2018) · Zbl 1393.35179 · doi:10.4171/IFB/398
[17] Prüss, J., Simonett, G., Zacher, R.: Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension. Arch. Ration. Mech. Anal. 207, 611-667 (2013) · Zbl 1269.80004 · doi:10.1007/s00205-012-0571-y
[18] Radkevich, E.V.: The classical Verigin-Muskat problem, the regularization problem, and inner layers. Sovrem. Mat. Prilozh. 16, 113-155 (2004). Translation in J. Math. Sci. (N.Y.), 1000-1044 (2004) · Zbl 1099.35181
[19] Tao, Y.: Classical solutions of Verigin problem with surface tension. Chin. Ann. Math. Ser. B 18, 393-404 (1997) · Zbl 0889.35055
[20] Tao, Y., Yi, F.: Classical Verigin problem as a limit case of Verigin problem with surface tension at free boundary. Appl. Math. J. Chin. Univ. Ser. B 11, 307-322 (1996) · Zbl 0859.35065 · doi:10.1007/BF02664799
[21] Wang, Y., Tice, I.: The viscous surface-internal wave problem: nonlinear Rayleigh-Taylor instability. Commun. Partial Differ. Equ. 37, 1967-2028 (2012) · Zbl 1294.76143 · doi:10.1080/03605302.2012.699498
[22] Wilke, M.: Rayleigh-Taylor instability for the two-phase Navier-Stokes equations with surface tension in cylindrical domains. Habilitations-Schrift Universität Halle. Naturwissenschaftliche Fakultät II (2013). arXiv:1703.05214
[23] Xu, L.F.: A Verigin problem with kinetic condition. Appl. Math. Mech. 18, 177-184 (1997) · Zbl 0893.76091
[24] Zhou, Y.: Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep. 720(722), 1-136 (2017) · Zbl 1377.76016
[25] Zhou, Y.: Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723(725), 1-60 (2017) · Zbl 1377.76017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.