×

Some identities of degenerate higher-order Daehee polynomials based on \(\lambda\)-umbral calculus. (English) Zbl 1532.11032

Summary: The degenerate versions of special polynomials and numbers, initiated by Carlitz, have regained the attention of some mathematicians by replacing the usual exponential function in the generating function of special polynomials with the degenerate exponential function. To study the relations between degenerate special polynomials, \( \lambda \)-umbral calculus, an analogue of umbral calculus, is intensively applied to obtain related formulas for expressing one \(\lambda \)-Sheffer polynomial in terms of other \(\lambda \)-Sheffer polynomials. In this paper, we study the connection between degenerate higher-order Daehee polynomials and other degenerate type of special polynomials. We present explicit formulas for representations of the polynomials using \(\lambda \)-umbral calculus and confirm the presented formulas between the degenerate higher-order Daehee polynomials and the degenerate Bernoulli polynomials, for example. Additionally, we investigate the pattern of the root distribution of these polynomials.

MSC:

11B68 Bernoulli and Euler numbers and polynomials
05A40 Umbral calculus
05A15 Exact enumeration problems, generating functions

References:

[1] R, A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra, J. Number Theory, 133, 3245-3263 (2013) · Zbl 1295.11023 · doi:10.1016/j.jnt.2013.03.004
[2] E, On the connection coefficients and recurrence relations arising from expansions in series of modified generalized Laguerre polynomials: Applications on a semi-infinite domain, Nonlinear Eng., 8, 318-327 (2019) · doi:10.1515/nleng-2018-0073
[3] W, Solutions of the connection problems between Fermat and generalized Fibonacci polynomials, JP J. Algebra, Number Theory Appl., 38, 349-362 (2016) · Zbl 1359.11014 · doi:10.17654/NT038040349
[4] W, New connection formulae between Chebyshev and Lucas polynomials: New expressions involving Lucas numbers via hypergeometric functions, Adv. Stud. Contemp. Math., 28, 357-367 (2018) · Zbl 1424.11031
[5] W, Connection formulae between generalized Lucas polynomials and some Jacobi polynomials: Application to certain types of fourth-order BVPs, Int. J. Appl. Comput. Math., 6, 45 (2020) · Zbl 1440.33008 · doi:10.1007/s40819-020-0799-4
[6] W, New hypergeometric connection formulae between Fibonacci and Chebyshev polynomials, Ramanujan J., 42, 347-361 (2017) · Zbl 1361.42026 · doi:10.1007/s11139-015-9712-x
[7] S. Roman, The Umbral Calculus, Academic Press, London, UK, 1984. · Zbl 0536.33001
[8] T, Some identities on truncated polynomials associated with degenerate Bell polynomials, Russ. J. Math. Phys., 28, 342-355 (2021) · Zbl 1477.11042 · doi:10.1134/S1061920821030079
[9] T, A note on degenerate stirling numbers and their applications, Proc. Jangjeon Math. Soc., 21, 195-203 (2018) · Zbl 1401.11060
[10] T, Representations by degenerate Daehee polynomials, Open Math., 20, 179-194 (2022) · Zbl 1485.05010 · doi:10.1515/math-2022-0013
[11] J, Representations of modified type 2 degenerate poly-Bernoulli polynomials, AIMS Math., 7, 11443-11463 (2022) · doi:10.3934/math.2022638
[12] L, A degenerate Staudt-Clausen theorem, Arch. Math., 7, 28-33 (1956) · Zbl 0070.04003 · doi:10.1007/BF01900520
[13] D, Daehee numbers and polynomials, Appl. Math. Sci., 7, 5969-5976 (2013) · doi:10.12988/ams.2013.39535
[14] D, Degenerate Sheffer sequences and \(\lambda \)-Sheffer sequences, J. Math. Anal. Appl., 493, 124521 (2021) · Zbl 1471.11110 · doi:10.1016/j.jmaa.2020.124521
[15] T, Some results on degenerate Daehee and Bernoulli numbers and polynomials, Adv. Differ. Equations, 2020, 1-13 (2020) · Zbl 1485.11046 · doi:10.1186/s13662-020-02778-8
[16] J, A note on the degenerate high order Daehee polynomials, Appl. Math. Sci., 9, 4635-4642 (2015) · doi:10.12988/ams.2015.56416
[17] D, A note on a new type of degenerate Bernoulli numbers, Russ. J. Math. Phys., 27, 227-235 (2020) · Zbl 1468.11072 · doi:10.1134/S1061920820020090
[18] T. Kim, A note on degenerate stirling polynomials of the second kind, arXiv preprint, (2017), arXiv: 1704.02290. https://doi.org/10.48550/arXiv.1704.02290
[19] J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press, 1958. · Zbl 0078.00805
[20] T, Some properties on degenerate Fubini polynomials, Appl. Math. Sci. Eng., 30, 235-248 (2022) · doi:10.1080/27690911.2022.2056169
[21] L, Degenerate Stirling, Bernoulli and Eulerian numbers, Util. Math., 15, 51-88 (1979) · Zbl 0404.05004
[22] T, Some identities on type 2 degenerate Bernoulli polynomials of the second kind, Symmetry, 12, 510 (2020) · doi:10.3390/sym12040510
[23] G, A note on type 2 degenerate Euler and Bernoulli polynomials, Adv. Stud. Contemp. Math., 29, 147-159 (2019) · Zbl 1423.11052
[24] D, Degenerate Mittag-Leffler polynomials, Appl. Math. Comput., 274, 258-266 (2016) · Zbl 1410.05009 · doi:10.1016/j.amc.2015.11.014
[25] N, Special polynomials and their applications, Math. Notes, 2, 77-89 (1996)
[26] T, Degenerate polyexponential functions and degenerate Bell polynomials, J. Math. Anal. Appl., 487, 124017 (2020) · Zbl 1507.11020 · doi:10.1016/j.jmaa.2020.124017
[27] T, Some identities of degenerate Bell polynomials, Mathematics, 8, 40 (2020) · doi:10.3390/math8010040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.