×

Low-rank approximation in the numerical modeling of the Farley-Buneman instability in ionospheric plasma. (English) Zbl 1349.76453

Summary: We consider numerical modeling of the Farley-Buneman instability in the Earth’s ionosphere plasma. The ion behavior is governed by the kinetic Vlasov equation with the BGK collisional term in the four-dimensional phase space, and since the finite difference discretization on a tensor product grid is used, this equation becomes the most computationally challenging part of the scheme. To relax the complexity and memory consumption, an adaptive model reduction using the low-rank separation of variables, namely the Tensor Train format, is employed.
The approach was verified via a prototype MATLAB implementation. Numerical experiments demonstrate the possibility of efficient separation of space and velocity variables, resulting in the solution storage reduction by a factor of order tens.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76X05 Ionized gas flow in electromagnetic fields; plasmic flow
82D10 Statistical mechanics of plasmas
86A25 Geo-electricity and geomagnetism

Software:

Matlab

References:

[1] Dimant, Y.; Oppenheim, M., Ion thermal effects on e-region instabilities: linear theory, J. Atmos. Sol.-Terr. Phys., 66, 17, 1639-1654 (2004)
[2] Farley, D. T., A plasma instability resulting in field-aligned irregularities in the ionosphere, J. Geophys. Res., 68, 22, 6083-6097 (1963) · Zbl 0115.42503
[3] Buneman, O., Excitation of field aligned sound waves by electron streams, Phys. Rev. Lett., 10, 285-287 (1963)
[4] Skadron, G.; Weinstock, J., Nonlinear stabilization of a two-stream plasma instability in the ionosphere, J. Geophys. Res., 74, 21, 5113-5126 (1969) · Zbl 0185.55905
[5] Sudan, R. N.; Akinrimisi, J.; Farley, D. T., Generation of small-scale irregularities in the equatorial electrojet, J. Geophys. Res., 78, 1, 240-248 (1973)
[6] Hamza, A. M.; Maurice, J.-P., A fully self-consistent fluid theory of anomalous transport in Farley-Buneman turbulence, J. Geophys. Res., 100, A6, 9653-9668 (1995)
[7] Newman, A. L.; Ott, E., Nonlinear simulations of type 1 irregularities in the equatorial electrojet, J. Geophys. Res., 86, A8, 6879-6891 (1981)
[8] Machida, S.; Goertz, C. K., Computer simulation of the Farley-Buneman instability and anomalous electron heating in the auroral ionosphere, J. Geophys. Res., 93, A9, 9993-10000 (1988)
[9] Schlegel, K.; Thiemann, H., Particle-in-cell plasma simulations of the modified two-stream instability, Ann. Geophys., 12, 10-11, 1091-1100 (1994)
[10] Janhunen, P., Perpendicular particle simulation of the e-region Farley-Buneman instability, J. Geophys. Res., 99, A6, 11461-11473 (1994)
[11] Oppenheim, M.; Dimant, Y., Ion thermal effects on e-region instabilities: 2D kinetic simulations, J. Atmos. Sol.-Terr. Phys., 66, 17, 1655-1668 (2004)
[12] Oppenheim, M. M.; Dimant, Y.; Dyrud, L. P., Large-scale simulations of 2-D fully kinetic Farley-Buneman turbulence, Ann. Geophys., 26, 3, 543-553 (2008)
[13] Oppenheim, M. M.; Dimant, Y. S., Kinetic simulations of 3-D Farley-Buneman turbulence and anomalous electron heating, J. Geophys. Res., 118, 3, 1306-1318 (2013)
[14] Oppenheim, M.; Otani, N., Spectral characteristics of the Farley-Buneman instability: Simulations versus observations, J. Geophys. Res., 101, A11, 24573-24582 (1996)
[15] Oppenheim, M.; Otani, N.; Ronchi, C., Saturation of the Farley-Buneman instability via nonlinear electron e × b drifts, J. Geophys. Res., 101, A8, 17273-17286 (1996)
[16] Dyrud, L.; Krane, B.; Oppenheim, M.; Pécseli, H. L.; Schlegel, K.; Trulsen, J.; Wernik, A. W., Low-frequency electrostatic waves in the ionospheric e-region: a comparison of rocket observations and numerical simulations, Ann. Geophys., 24, 11, 2959-2979 (2006)
[17] Kovalev, D. V.; Smirnov, A. P.; Dimant, Y. S., Modeling of the Farley-Buneman instability in the e-region ionosphere: a new hybrid approach, Ann. Geophys., 26, 9, 2853-2870 (2008)
[18] Kovalev, D.; Smirnov, A.; Dimant, Y. S., Simulations of the nonlinear stage of Farley-Buneman instability with allowance for electron thermal effects, Plasma Phys. Rep., 35, 7, 603-610 (2009)
[19] Kovalev, D.; Smirnov, A.; Dimant, Y. S., Study of kinetic effects arising in simulations of Farley-Buneman instability, Plasma Phys. Rep., 35, 5, 420-425 (2009)
[20] Kovalev, D.; Smirnov, A.; Dimant, Y., On the effect of electron-mass variation in numerical simulations of the Farley-Buneman instability, Moscow. Univ. Comput. Math. Cybern., 33, 1, 17-24 (2009) · Zbl 1179.82121
[21] Kovalev, D. V., Numerical modeling of the Farley-Buneman instability in the earth’s ionosphere (2009), MSU CMC: MSU CMC Moscow, (in Russian)
[22] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 3, 506-517 (1968) · Zbl 0184.38503
[23] Marchuk, G. I., Splitting-up methods for non-stationary problems, Comput. Math. Math. Phys., 35, 6, 843-849 (1995), (in Russian) · Zbl 0852.65084
[24] Tyrtyshnikov, E. E., Tensor approximations of matrices generated by asymptotically smooth functions, Sb. Math., 194, 6, 941-954 (2003) · Zbl 1067.65044
[25] Tyrtyshnikov, E. E., Kronecker-product approximations for some function-related matrices, Linear Algebra Appl., 379, 423-437 (2004) · Zbl 1046.65033
[26] Hitchcock, F. L., The expression of a tensor or a polyadic as a sum of products, J. Math. Phys., 6, 1, 164-189 (1927) · JFM 53.0095.01
[27] Kolda, T. G.; Bader, B. W., Tensor decompositions and applications, SIAM Rev., 51, 3, 455-500 (2009) · Zbl 1173.65029
[28] de Silva, V.; Lim, L.-H., Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. Appl., 30, 3, 1084-1127 (2008) · Zbl 1167.14038
[29] Oseledets, I. V.; Tyrtyshnikov, E. E., Breaking the curse of dimensionality, or how to use SVD in many dimensions, SIAM J. Sci. Comput., 31, 5, 3744-3759 (2009) · Zbl 1200.65028
[30] Oseledets, I. V., Tensor-train decomposition, SIAM J. Sci. Comput., 33, 5, 2295-2317 (2011) · Zbl 1232.15018
[31] White, S. R., Density-matrix algorithms for quantum renormalization groups, Phys. Rev. B, 48, 14, 10345-10356 (1993)
[32] Klümper, A.; Schadschneider, A.; Zittartz, J., Matrix product ground states for one-dimensional spin-1 quantum antiferromagnets, Europhys. Lett., 24, 4, 293-297 (1993)
[33] Khoromskij, B. N., Tensor-structured numerical methods in scientific computing: Survey on recent advances, Chemom. Intell. Lab. Syst., 110, 1, 1-19 (2012)
[34] Hackbusch, W., Tensor Spaces and Numerical Tensor Calculus (2012), Springer-Verlag: Springer-Verlag Berlin · Zbl 1244.65061
[35] Grasedyck, L.; Kressner, D.; Tobler, C., A literature survey of low-rank tensor approximation techniques (2013), preprint · Zbl 1279.65045
[36] Perez-Garcia, D.; Verstraete, F.; Wolf, M. M.; Cirac, J. I., Matrix product state representations, Quantum Inf. Comput., 7, 5, 401-430 (2007) · Zbl 1152.81795
[37] Schollwöck, U., The density-matrix renormalization group in the age of matrix product states, Ann. Phys., 326, 1, 96-192 (2011) · Zbl 1213.81178
[38] Holtz, S.; Rohwedder, T.; Schneider, R., The alternating linear scheme for tensor optimization in the tensor train format, SIAM J. Sci. Comput., 34, 2, A683-A713 (2012) · Zbl 1252.15031
[39] Dolgov, S. V.; Oseledets, I. V., Solution of linear systems and matrix inversion in the TT-format, SIAM J. Sci. Comput., 34, 5, A2718-A2739 (2012) · Zbl 1259.65071
[40] Khoromskij, B. N.; Oseledets, I. V., DMRG+QTT approach to computation of the ground state for the molecular Schrödinger operator (2010), Preprint 69, MPI MIS, Leipzig
[41] Dolgov, S. V.; Khoromskij, B. N.; Oseledets, I. V.; Savostyanov, D. V., Computation of extreme eigenvalues in higher dimensions using block tensor train format, Comput. Phys. Commun. (2014), in press · Zbl 1344.65043
[42] Oseledets, I. V., DMRG approach to fast linear algebra in the TT-format, Comput. Methods Appl. Math., 11, 3, 382-393 (2011) · Zbl 1283.15041
[43] Savostyanov, D. V.; Oseledets, I. V., Fast adaptive interpolation of multi-dimensional arrays in tensor train format, (Proceedings of 7th International Workshop on Multidimensional Systems (nDS) (2011), IEEE)
[44] Savostyanov, D. V., Quasioptimality of maximum-volume cross interpolation of tensors (2013), preprint · Zbl 1294.65017
[45] Dolgov, S. V.; Savostyanov, D. V., Alternating minimal energy methods for linear systems in higher dimensions. Part I: SPD systems (2013), arXiv preprint
[46] Dolgov, S. V.; Savostyanov, D. V., Alternating minimal energy methods for linear systems in higher dimensions. Part II: Faster algorithm and application to nonsymmetric systems (2013), preprint
[47] Khoromskij, B. N., \(O(d \log n)\)-Quantics approximation of \(N-d\) tensors in high-dimensional numerical modeling, Constr. Approx., 34, 2, 257-280 (2011) · Zbl 1228.65069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.