×

The limits of Hamiltonian structures in three-dimensional elasticity, shells, and rods. (English) Zbl 0860.73036

In this important article, the authors lay down a theory of shells and rods in dynamics starting from the Hamilton’s equations. Using the three-dimensional continuum mechanics, the theory is based on the Cosserat director method, with a linear approximation of the three-dimensional displacement as a function of the thickness. Hence the form of the director vector. The method utilizes the Hamilton theory as a space phase extension, and the dynamic equations are derived in the form of Poisson’s brackets approximated by using an “almost embedding” theorem. Beginning with the case of unconstrained systems, the weak convergence is shown for the thickness tending to zero. The main difficulty comes from the case of a constrained director model. Various examples of constrained models are given for the case of constant thickness, for linearized Saint-Venant’s models, for Kirchhoff membrane models, for inextensible Kirchhoff shells, etc. The authors wish to extend the results to strong convergence results.
All the paper is deeply and carefully detailed; however, this article calls for some remarks. First of all, the three-dimensional primal density energy is supposed to be a function not only of strains, but also of the boundary terms, which is new. This remarkable fact confirms, to our belief, the necessity of a constitutive law for the body boundaries, due to variational arguments. It must be observed also that a necessary constraint, classically called Jacobi’s relation, is not apparently taken into account, which is a matter of reflexion. Another remark comes from the fact that the unsolved difficulty due to finding and expressing the constitutive equations with director models seems to be overcome thanks again to the main director approximation.
In conclusion, this paper, which extends preceding results by Fox, Roult and Simo, is most interesting, though a little intricate, and deserves much attention due to some original theoretical results on shells (and rods) structures.
Reviewer: R.Valid (Paris)

MSC:

74K15 Membranes
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
70H99 Hamiltonian and Lagrangian mechanics
Full Text: DOI

References:

[1] Abresch, U. [1987] Constant mean curvature tori in terms of elliptic functions.J. Reine Angew. Math. 374, 169–192. · Zbl 0597.53003 · doi:10.1515/crll.1987.374.169
[2] Antman, S. S. [1972], The theory of rods,Handbuch der Physik, Band VIa/2, S. Flügge and C. Truesdell, eds., Springer-Verlag, Berlin, 641–703.
[3] Antman, S. S. [1995],Nonlinear Problems of Elasticity, Applied Mathematical Sciences,107, Springer-Verlag, New York. · Zbl 0820.73002
[4] Antman, S. S. and W. H. Warner [1967] Dynamical theory of hyperelastic rods.Arch. Ratl. Mech. Anal. 23, 135–162.
[5] Caflisch, R. and J. H. Maddocks [1984] Nonlinear dynamical theory of the elastica.Proc. R. Soc. Edin. 99A, 1–23. · Zbl 0589.73057
[6] Camassa, R. and D. Holm [1993] An integrable shallow water equation with peaked solitons,Phys. Rev. Lett.,71, 1661–1664. · doi:10.1103/PhysRevLett.71.1661
[7] Ciarlet, P. G. [1980], A justification of the von Kármán equations.Arch. Ratl. Mech. Anal. 73, 349–389. · Zbl 0443.73034 · doi:10.1007/BF00247674
[8] Ciarlet, P. G. [1994] Mathematical shell theory: recent developments and open problems, inDuration and Change: Fifty years at Oberwolfach, M. Artin, H. Kraft, and R. Remmert eds., Springer-Verlag, New York, 159–176. · Zbl 0807.73037
[9] Ciarlet, P. G. and V. Lods [1994] Analyse asymptotique des coques linéairement élastiques. III. Une justification du modèle de W. T. Koiter.C. R. Acad. Sci. Paris 319 299–304. · Zbl 0837.73040
[10] Ciarlet, P. G., V. Lods, and B. Miara [1994] Analyse asymptotique des coques linéairement élastiques. II. Coques ”en flexion”.C. R. Acad. Sci. Paris 319, 95–100, 1994. · Zbl 0819.73043
[11] Ciarlet, P. G. and B. Miara [1992], Two dimensional shallow shell equations.Comm. Pure Appl. Math. XLV, 327–360. · Zbl 0769.73050 · doi:10.1002/cpa.3160450305
[12] Destuynder, P. [1985], A classification of thin shell theories.Acta Appl. Math. 4, 15–63. · doi:10.1007/BF02293490
[13] do Carmo, M. [1976],Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, N.J.. · Zbl 0326.53001
[14] Foltinek, K. [1994] The Hamilton theory of elastica.Amer. J. Math. 116, 1479–1488. · Zbl 0821.70012 · doi:10.2307/2375055
[15] Fox, D., A. Raoult, and J. C. Simo [1992] Modèles asymptotiques invariants pour des structures minces élastiques.C. R. Acad. Sci. Paris 315, 235–240. · Zbl 0760.73034
[16] Fox, D., A. Raoult, and J. C. Simo [1993] A justification of nonlinear properly invariant plate theories.Arch. Ratl. Mech. Anal.,124, 157–199. · Zbl 0789.73039 · doi:10.1007/BF00375134
[17] Ge, Z. [1991] Equivariant symplectic difference schemes and generating functions,Physica D 49, 376–386. · Zbl 0735.58018 · doi:10.1016/0167-2789(91)90154-2
[18] Ge, Z., H. P. Kruse, J. E. Marsden and C. Scovel [1995] Poisson Brackets in the Shallow Water Approximation.Canad. Appl. Math. Quart., to appear. · Zbl 0852.35113
[19] Ge, Z. and J. E. Marsden [1988] Lie-Poisson integrators and Lie-Poisson Hamilton-Jacobi theory,Phys. Lett. A 133, 134–139. · Zbl 1369.70038 · doi:10.1016/0375-9601(88)90773-6
[20] Ge, Z. and C. Scovel [1994] A Hamiltonian truncation of the shallow water equation.Lett. Math. Phys. 31, 1–13. · Zbl 0799.35183 · doi:10.1007/BF00751167
[21] John, F. [1971] Refined interior equations for the elastic shells.Comm. Pure Appl. Math. 24, 584–675. · Zbl 0299.73037 · doi:10.1002/cpa.3160240502
[22] Kato, T. [1985]Abstract Differential Equations and Nonlinear Mixed Problems. Lezioni Fermiane, Scuola Normale Superiore, Accademia Nazionale dei Lincei.
[23] Koiter, W. T. [1970], On the foundation of the linear theory of thin elastic shells.Proc. Kon. Nederl. Akad. Wetensch. B69, 1–54. · Zbl 0213.27002
[24] Landau, L. D. and E. M. Lifshitz [1959],Theory of Elasticity, Addison-Wesley, Reading, MA. · Zbl 0178.28704
[25] Langer, J. and R. Perline [1991] Poisson geometry of the filament equation.J. Nonlin. Sci. 1, 71–94. · Zbl 0795.35115 · doi:10.1007/BF01209148
[26] Le Dret, H. and A. Raoult [1995] The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity.J. Math. Pure Appl. (to appear). · Zbl 0847.73025
[27] Love, A. E. H. [1944]A Treatise on the Mathematical Theory of Elasticity. Dover, New York.
[28] Maddocks, J. [1984] Stability of nonlinearly elastic rods.Arch. Ratl. Mech. Anal. 85, 311–354. · Zbl 0545.73039 · doi:10.1007/BF00275737
[29] Maddocks, J. [1991] On the stability of relative equilibria.IMA J. Appl. Math. 46, 71–99. · Zbl 0734.70006 · doi:10.1093/imamat/46.1-2.71
[30] Marsden, J. E. and T. J. R. Hughes [1994]Mathematical Foundations of Elasticity. Dover, New York; reprint of [1983] Prentice-Hall edition. · Zbl 0545.73031
[31] Marsden, J. E., T. S. Ratiu, and G. Raugel [1995] Equations d’Euler dans une coque sphérique mince (The Euler equations in a thin spherical shell),C. R. Acad. Sci. Paris 321, 1201–1206. · Zbl 0837.76077
[32] Mielke, A. and P. Holmes [1988] Spatially complex equilibira of buckled rods.Arch. Ratl. Mech. Anal.,101, 319–348. · Zbl 0655.73029 · doi:10.1007/BF00251491
[33] Naghdi, P. [1972], The theory of shells and plates.Handbuch der Physik Band VIa/2, S. Flügge and C. Truesdell, eds., Springer-Verlag, Berlin, 425–640.
[34] Shi, Y. and J. E. Hearst [1994] The Kirchhoff elastic rod, the nonlinear Schrödinger equation, and DNA supercoiling.J. Chem. Phys. 101, 5186–5200. · doi:10.1063/1.468506
[35] Simo, J. C., M. S. Rifai, and D. D. Fox [1992], On a stress resultant geometrically exact shell models. Part VI: Conserving algorithms for nonlinear dynamics.Comp. Meth. Appl. Mech. Eng. 34, 117–164. · Zbl 0760.73045
[36] Simo, J. C., J. E. Marsden, and P. S. Krishnaprasad [1988] The Hamiltonian structure of nonlinear elasticity: The material, spatial, and convective representations of solids, rods, and plates.Arch. Ratl. Mech. Anal. 104, 125–183. · Zbl 0668.73014 · doi:10.1007/BF00251673
[37] Simo, J. C., T. A. Posbergh, and J. E. Marsden [1990] Stability of coupled rigid body and geometrically exact rods: block diagonalization and the energy-momentum method,Phys. Rep. 193, 280–360. · doi:10.1016/0370-1573(90)90125-L
[38] Simo, J. C., T. A. Posbergh, and J. E. Marsden [1991] Stability of relative equilibria II: Three dimensional elasticity,Arch. Ratl. Mech. Anal.,115, 61–100. · Zbl 0738.70011 · doi:10.1007/BF01881679
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.