×

Algebraic \(K\)-theory of Gorenstein projective modules. (English) Zbl 1381.16007

Summary: We introduce the Gorenstein algebraic \(K\)-theory space and the Gorenstein algebraic \(K\)-group of a ring, and show the relation with the classical algebraic \(K\)-theory space, and also show the ’resolution theorem’ in this context due to Quillen. We characterize the Gorenstein algebraic \(K\)-groups by two different algebraic \(K\)-groups and by the idempotent completeness of the Gorenstein singularity category of the ring. We compute the Gorenstein algebraic \(K\)-groups along a recollement of the bounded Gorenstein derived categories of CM-finite Gorenstein algebras.

MSC:

16E20 Grothendieck groups, \(K\)-theory, etc.
16E65 Homological conditions on associative rings (generalizations of regular, Gorenstein, Cohen-Macaulay rings, etc.)
16D40 Free, projective, and flat modules and ideals in associative algebras
19D50 Computations of higher \(K\)-theory of rings
18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
Full Text: DOI

References:

[1] Auslander M, Bridger M. Stable Module Theory. Mem Amer Math Soc, No 94. Providence: Amer Math Soc, 1969 · Zbl 0204.36402
[2] Balmer P, Schlichting M. Idempotent completion of triangulated categories. J Algebra, 2001, 236: 819-834 · Zbl 0977.18009 · doi:10.1006/jabr.2000.8529
[3] Bao Y H, Du X N, Zhao Z B. Gorenstein singularity categories. J Algebra, 2015, 428: 122-137 · Zbl 1329.18011 · doi:10.1016/j.jalgebra.2015.01.011
[4] Beligiannis A. On algebras of nite Cohen-Macaulay type. Adv Math, 2011, 226: 1973-2019 · Zbl 1239.16016 · doi:10.1016/j.aim.2010.09.006
[5] Chen H X, Xi C C. Recollements of derived categories II: Algebraic K-theory. 2014, ArXiv: 1212.1879
[6] Chen H X, Xi C C. Higher algebraic K-theory of ring epimorphisms. Algebr Represent Theory, 2016, 19: 1347-1367 · Zbl 1373.16018 · doi:10.1007/s10468-016-9621-8
[7] Enochs, E. E.; Jenda, O. M G., Relative Homological Algebra (2000), Berlin · Zbl 0952.13001
[8] Gao N, Zhang P. Gorenstein derived categories. J Algebra, 2010, 323: 2041-2057 · Zbl 1222.18005 · doi:10.1016/j.jalgebra.2010.01.027
[9] Happel D. Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. London Math Soc Lecture Notes Ser, Vol 119. Cambridge: Cambridge Univ Press, 1988 · Zbl 0635.16017 · doi:10.1017/CBO9780511629228
[10] Hügel L A, König S, Liu Q H, Yang D. Ladders and simplicity of derived module categories. J Algebra, 2017, 472: 15-66 · Zbl 1373.16020 · doi:10.1016/j.jalgebra.2016.10.023
[11] Keller B. Chain complexes and stable categories. Manuscripta Math, 1990, 67(4): 379-417 · Zbl 0753.18005 · doi:10.1007/BF02568439
[12] Keller B. Derived categories and their uses. In: Hazewinkel M, ed. Handbook of Algebra, Vol 1. Amsterdam: North-Holland, 1996, 671-701 · Zbl 0862.18001
[13] Quillen, D.; Bass, H. (ed.), Higher algebraic K-theory^I, 85-147 (1973), Berlin · Zbl 0292.18004
[14] Schlichting M. Negative K-theory of derived categories. Math Z, 2006, 253: 97-134 · Zbl 1090.19002 · doi:10.1007/s00209-005-0889-3
[15] Thomason R W, Trobaugh T. Higher algebraic K-theory of schemes and of derived categories. In: Cartier P, Illusie L, Katz N M, Laumon G, Manin Y, Ribet K A, eds. The Grothendieck Festschrift, Vol III. Progr Mathematics, Vol 88. Boston: Birkhäus, 1990, 247-435
[16] Waldhausen, F.; Ranicki, A. (ed.); Levitt, N. (ed.); Quinn, F. (ed.), Algebraic K-theory of spaces, 318-419 (1983), Berlin · Zbl 0579.18006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.