×

The split building of a reductive group. (English) Zbl 0795.20026

Suppose \(M\) is a free module of finite rank over a Dedekind domain \(R\). Let \({\mathcal S}(M)\) be the partially ordered set whose elements are \(\{(M_ 1, M_ 2)\mid M_ 1\), \(M_ 2\) are non-zero submodules of \(M\), \(M=M_ 1 \oplus M_ 2\}\) with inclusion relation given by \((M_ 1,M_ 2)\leq (M_ 1', M_ 2')\) if \(M_ 1\subseteq M_ 1'\) and \(M_ 2\supseteq M_ 2'\). R. M. Charney [Invent Math. 56, 1-17 (1980; Zbl 0427.18013)] showed that the simplicial object corresponding to \({\mathcal S}(M)\) has the homotopy type of a bouquet of spheres and therefore is spherical – i.e., has reduced homology which vanishes except in the top dimension. Our starting point is the observation that when \(R\) is a field, this result may by interpreted as a statement about a certain fibre space over the Tits building of \(\text{GL}(n,R)\).
In this work we define the notion of split building \({\mathcal S}(V)\) for any finite dimensional vector space \(V\) over a field, which has a sesquilinear (or bilinear) form. In case the form is zero \({\mathcal S}(V)\) coincides with the notion above. If \(G\) is any connected reductive linear algebraic group defined over a field \(k\), we also define the split building \({\mathcal S}(G,k)\) of \(G\) with respect to \(k\). Both \({\mathcal S}(V)\) and \({\mathcal S}(G,k)\) are locally finite posets.

MSC:

20G15 Linear algebraic groups over arbitrary fields
05E25 Group actions on posets, etc. (MSC2000)
20E42 Groups with a \(BN\)-pair; buildings
14L35 Classical groups (algebro-geometric aspects)
06A11 Algebraic aspects of posets
18G55 Nonabelian homotopical algebra (MSC2010)

Citations:

Zbl 0427.18013

References:

[1] Baclawski, K.: Cohen-Macaulay ordered sets. J. Algebra63, 226-258 (1980) · Zbl 0451.06004 · doi:10.1016/0021-8693(80)90033-2
[2] Bj?rner, A.: Shellable and Cohen-Macaulay partially ordered sets. Trans. Am. Math. Soc.260, 159-183 (1980) · Zbl 0441.06002
[3] Bourbaki, N.: Groupes et alg?bres de Lie, Chaps. IV, V, VI. Paris: Hermann 1968
[4] Borel, A., Tits, J.: Groupes r?ductifs. Publ. Math., Inst. Hautes ?tud. Sci.27, 55-152 (1965) · Zbl 0145.17402 · doi:10.1007/BF02684375
[5] Charney, R.M.: Homology stability forGL n of a Dedekind domain. Invent. Math.56, 1-17 (1980) · Zbl 0427.18013 · doi:10.1007/BF01403153
[6] Curtis, C.W., Lehrer, G.I.: A new proof of a theorem of Solomon-Tits. Proc. Am. Math. Soc.85, 154-156 (1982) · Zbl 0497.20041 · doi:10.1090/S0002-9939-1982-0652431-1
[7] Curtis, C.W., Lehrer, G.I.: Homology representations of finite groups of Lie type. Contemp. Math.9, 1-28 (1982) · Zbl 0497.20040
[8] Curtis, C.W., Lehrer, G.I., Tits, J.: Spherical buildings and the character of the Steinberg representation. Invent. Math.58, 201-210 (1980) · Zbl 0435.20024 · doi:10.1007/BF01390251
[9] Dieudonn?, J.: La g?om?trie des groupes classiques. Berlin Heidelberg New York: Springer 1963 · Zbl 0111.03102
[10] Garst, P.F.: Cohen-Macaulay complexes and group actions. Ph.D. Thesis, University of Wisconsin-Madison (1979)
[11] Milnor, J.: Construction of universal bundles. II. Ann. Math.63, 430-436 (1956) · Zbl 0071.17401 · doi:10.2307/1970012
[12] Munkre, J.R.: Topological results in combinatorics. Mich. Math. J.31, 113-128 (1984) · Zbl 0585.57014 · doi:10.1307/mmj/1029002969
[13] Quillen, D.: Homotopy properties of the poset of nontrivialp-subgroups of a group. Adv. Math.28, 101-128 (1978) · Zbl 0388.55007 · doi:10.1016/0001-8708(78)90058-0
[14] Rylands, L.J.: Representations of classical groups on the homology of their split buildings. Ph.D. Thesis, University of Sydney (1990) · Zbl 0738.05077
[15] Tits, J.: Buildings of spherical type and finiteBN-pairs (Lect. Notes Math., vol. 386) Berlin Heidelberg New York: Springer 1974 · Zbl 0295.20047
[16] Vogtmann, K.: Spherical posets and homology stability forO n,n . Topology20, 119-132 (1981) · Zbl 0455.20031 · doi:10.1016/0040-9383(81)90032-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.