×

Togliatti systems associated to the dihedral group and the weak Lefschetz property. (English) Zbl 1523.14079

Summary: In this note, we study Togliatti systems generated by invariants of the dihedral group \(D_{2d}\) acting on \(k[x_0, x_1, x_2]\). This leads to the first family of non-monomial Togliatti systems, which we call GT-systems with group \(D_{2d}\). We study their associated varieties \(S_{D_{2d}}\), called GT-surfaces with group \(D_{2d}\). We prove that there are arithmetically Cohen-Macaulay surfaces whose homogeneous ideal, \(I(S_{D_{2d}})\), is minimally generated by quadrics and we find a minimal free resolution of \(I(S_{D_{2d}})\).

MSC:

14M05 Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)
13A50 Actions of groups on commutative rings; invariant theory
13C14 Cohen-Macaulay modules
14L30 Group actions on varieties or schemes (quotients)

Software:

Macaulay2

References:

[1] Almeida, C.; Andrade, A. V.; Miró-Roig, R. M., Gaps in the number of generators of monomial Togliatti systems, Journal of Pure and Applied Algebra, 223, 1817-1831 (2019) · Zbl 1455.13033 · doi:10.1016/j.jpaa.2018.07.009
[2] Altafi, N.; Boij, M., The weak Lefschetz property of equigenerated monomial ideals, Journal of Algebra, 556, 136-168 (2020) · Zbl 1457.13042 · doi:10.1016/j.jalgebra.2020.02.020
[3] Brenner, H.; Kaid, A., Syzygy bundles on ℙ^2and the Weak Lefschetz Property, Illinois Journal of Mathematics, 51, 1299-1308 (2007) · Zbl 1148.13007 · doi:10.1215/ijm/1258138545
[4] Colarte, L.; Mezzetti, E.; Miró-Roig, R. M., On the arithmetic Cohen—Macaulayness of varieties parameterized by Togliatti systems, Annali di Matematica Pura ed Applicata, 200, 1757-1780 (2021) · Zbl 1470.14095 · doi:10.1007/s10231-020-01058-2
[5] Colarte, L.; Mezzetti, E.; Miró-Roig, R. M.; Salat, M., On the coefficients of the permanent and the determinant of a circulant matrix. Applications, Proceedings of the American Mathematical Society, 147, 547-558 (2019) · Zbl 1407.15037 · doi:10.1090/proc/14296
[6] Colarte, L.; Miró-Roig, R. M., Minimal set of binomial generators for certain Veronese 3-fold projections, Journal of Pure and Applied Algebra, 224, 768-788 (2020) · Zbl 1430.13028 · doi:10.1016/j.jpaa.2019.06.009
[7] D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry, http://www.math.uiuc.edu/Macaulay2/.
[8] Gröbner, W., Über Veronesesche Varietäten und deren Projektionen, Archiv der Mathematik, 16, 257-264 (1965) · Zbl 0135.21105 · doi:10.1007/BF01220031
[9] Hochster, M., Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Annals of Mathematics, 96, 318-337 (1972) · Zbl 0233.14010 · doi:10.2307/1970791
[10] Hochster, M.; Eagon, J. A., Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, American Journal of Mathematics, 93, 1020-1058 (1971) · Zbl 0244.13012 · doi:10.2307/2373744
[11] Mezzetti, E.; Miro-Roig, R. M., The minimal number of generators of a Togliatti system, Annali di Matematica Pura ed Applicata, 195, 2077-2098 (2016) · Zbl 1357.13024 · doi:10.1007/s10231-016-0554-y
[12] Mezzetti, E.; Miro-Roig, R. M., Togliatti systems and Galois coverings, Journal of Algebra, 509, 263-291 (2018) · Zbl 1395.13019 · doi:10.1016/j.jalgebra.2018.05.014
[13] Mezzetti, E.; Miró-Roig, R. M.; Ottaviani, G., Laplace equations and the weak Lefschetz property, Canadian Journal of Mathemaqtics, 65, 634-654 (2013) · Zbl 1271.13036 · doi:10.4153/CJM-2012-033-x
[14] Michałek, M.; Miró-Roig, R. M., Smooth monomial Togliatti systems of cubics, Journal of Combinatorial Theory. Series A, 143, 66-87 (2016) · Zbl 1369.13028 · doi:10.1016/j.jcta.2016.05.004
[15] Miró-Roig, R. M.; Salat, M., On the classification of Togliatti systems, Communications in Algebra, 46, 2459-2475 (2018) · Zbl 1398.13017 · doi:10.1080/00927872.2017.1388813
[16] Serre, J-P, Groupes algébriques et corps de classes (1959), Paris: Hermann, Paris · Zbl 0097.35604
[17] Serre, J-P, Linear Representations of Finite Groups (1977), New York-Heidelberg: Springer, New York-Heidelberg · Zbl 0355.20006 · doi:10.1007/978-1-4684-9458-7
[18] Shephard, G.; Todd, J., Finite unitary reflection groups, Canadian Journal of Mathematics, 6, 274-304 (1954) · Zbl 0055.14305 · doi:10.4153/CJM-1954-028-3
[19] Stanley, R. P., Invariants of finite groups and their application to combinatorics, Bulletin of the American Mathematical Society, 1, 475-511 (1979) · Zbl 0497.20002 · doi:10.1090/S0273-0979-1979-14597-X
[20] Sturmfels, B., Algorithms in Invariant Theory (2008), Vienna: Springer, Vienna · Zbl 1154.13003
[21] Szpond, J., Unexpected curves and Togliatti-type surfaces, Mathematische Nachrichten, 293, 1, 158-168 (2020) · Zbl 1520.14103 · doi:10.1002/mana.201800455
[22] Togliatti, E., Alcuni esempî di superficie algebriche degli iperspazî che rappresentano un’equazione di Laplace, Commentarii Mathematici Helvetici, 1, 255-272 (1929) · JFM 55.1011.02 · doi:10.1007/BF01208366
[23] Togliatti, E., Alcune osservazioni sulle superficie razionali che rappresentano equazioni di Laplace, Annali di Matematica Pura ed Applicata, 25, 325-339 (1946) · Zbl 0061.34805 · doi:10.1007/BF02418089
[24] Yanagawa, K., Some generalizations of Castelnuovo’s lemma on zero-dimensional schemes, Journal of Algebra, 170, 429-439 (1994) · Zbl 0838.14040 · doi:10.1006/jabr.1994.1346
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.