×

Moduli spaces of irreducible symplectic manifolds. (English) Zbl 1230.14051

Irreducible holomorphic symplectic manifolds are simply connected compact complex manifolds of Kähler type whose space of global holomorphic \(2\)-forms is generated by a closed non-degenerate \(2\)-form. In complex dimension two, the irreducible holomorphic symplectic manifolds are precisely the \(K3\)-surfaces. Higher dimensional examples are rare. To date, up to deformation equivalence, the only known examples are Hilbert schemes of zero-dimensional subschemes of length \(n\) on a \(K3\)-surface, generalised Kummer varieties and two examples of dimension \(6\) and \(10\) constructed by O’Grady.
In the paper under review the authors study moduli spaces of polarised irreducible holomorphic symplectic manifolds. For their main result they consider irreducible holomorphic symplectic manifolds which are deformation equivalent to Hilb\(^2(S)\) for a \(K3\) surface \(S\), equipped with a primitive polarisation of split type and of Beauville-degree \(2d\geq 24\). They prove that each irreducible component of the 20-dimensional moduli space of such polarised manifolds is of general type.
To prove this, they first show (for general polarised irreducible holomorphic symplectic manifolds) that each component of the moduli space is related by a finite dominant period map to a quotient of a homogeneous domain by an arithmetic group. The proof of the main result is similar to the proof the authors have given for the moduli space of polarised \(K3\) surfaces [Invent.Math.169, No.3, 519–567 (2007; Zbl 1128.14027)].
They use that the existence of a low-weight cusp form with suitable vanishing locus implies that the components of the arithmetic quotient are of general type. Such a cusp form is then constructed as a quasi-pull back of the Borcherds form (a modular form of weight 12 for \(O^+(2U\oplus3E_8(-1))\). This construction requires the existence of a vector of length \(2d\) in the lattice \(E_7\) which is orthogonal to at most 14 roots. The proof of the existence of such a vector is the technical heart of this article. In involves estimating the number of ways certain integers can be represented by various quadratic forms of odd rank.

MSC:

14J15 Moduli, classification: analytic theory; relations with modular forms
11E25 Sums of squares and representations by other particular quadratic forms
11F55 Other groups and their modular and automorphic forms (several variables)
14J35 \(4\)-folds
32J27 Compact Kähler manifolds: generalizations, classification
53C26 Hyper-Kähler and quaternionic Kähler geometry, “special” geometry

Citations:

Zbl 1128.14027

References:

[2] doi:10.1142/S0219199708002909 · Zbl 1216.14040 · doi:10.1142/S0219199708002909
[4] doi:10.1007/BF01241126 · Zbl 0932.11028 · doi:10.1007/BF01241126
[5] doi:10.1215/S0012-7094-06-13413-0 · Zbl 1105.14051 · doi:10.1215/S0012-7094-06-13413-0
[8] doi:10.1023/A:1000675831026 · Zbl 0948.14007 · doi:10.1023/A:1000675831026
[10] doi:10.2307/2374387 · Zbl 0538.14006 · doi:10.2307/2374387
[11] doi:10.1007/BF01451927 · Zbl 0439.10016 · doi:10.1007/BF01451927
[20] doi:10.1007/BF01436180 · Zbl 0311.10030 · doi:10.1007/BF01436180
[23] doi:10.1007/s00208-002-0344-2 · Zbl 1028.53081 · doi:10.1007/s00208-002-0344-2
[25] doi:10.1007/s00222-002-0280-5 · Zbl 1029.53058 · doi:10.1007/s00222-002-0280-5
[26] doi:10.1007/s002220050280 · Zbl 0953.53031 · doi:10.1007/s002220050280
[27] doi:10.1007/s00039-009-0022-6 · Zbl 1183.14058 · doi:10.1007/s00039-009-0022-6
[28] doi:10.1023/A:1001706324425 · Zbl 0956.14031 · doi:10.1023/A:1001706324425
[29] doi:10.1007/BFb0065299 · doi:10.1007/BFb0065299
[30] doi:10.1006/jnth.1998.2258 · Zbl 0930.11021 · doi:10.1006/jnth.1998.2258
[32] doi:10.1016/j.jalgebra.2009.01.037 · Zbl 1173.14027 · doi:10.1016/j.jalgebra.2009.01.037
[34] doi:10.1007/BF01389270 · Zbl 0622.14009 · doi:10.1007/BF01389270
[37] doi:10.1007/s00222-007-0054-1 · Zbl 1128.14027 · doi:10.1007/s00222-007-0054-1
[38] doi:10.1007/BF02125128 · Zbl 0688.53030 · doi:10.1007/BF02125128
[39] doi:10.1017/S0305004197002259 · Zbl 0930.11028 · doi:10.1017/S0305004197002259
[42] doi:10.1112/S002461079900808X · Zbl 0961.14028 · doi:10.1112/S002461079900808X
[44] doi:10.2307/1968644 · Zbl 0012.19703 · doi:10.2307/1968644
[46] doi:10.1353/ajm.2002.0030 · Zbl 1047.11035 · doi:10.1353/ajm.2002.0030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.