×

A characteristic-free criterion of birationality. (English) Zbl 1251.14007

The authors develop a purely algebraic theory at the level of graded rings of rational maps between reduced, but not necessarily irreducible, projective varieties in arbitrary characteristic.
Let \(R\) be a graded \(k\)-algebra, where \(k\) is any algebraically closed field. A rational \((m+1)\)-datum of degree d on \(R\) is defined to be an ordered set of \(m+1\) forms \(\mathbf{f}=\{f_0, \dots, f_m\}\) of degree \(d\) such that \(R\) is torsion free over its subring \(k[f_0,\dots,f_m]\) and the ideal \((f_0, \dots, f_m)\) is not contained in any minimal prime ideal of \(R\). This means that the induced map \(\mathrm{Proj} R \dasharrow \mathbb{P}^m\) is defined on a dense open set. Then a numerical invariant of a rational map is introduced, called the Jacobian dual rank, with data in the Rees algebra \(\mathcal{R}(I)\), where \(I\) is the ideal of \(R\) generated by \(f_0,\dots,f_m\). It is proved that a rational map is birational if and only if the Jacobian dual rank is well defined and attains its maximal possible value. As an application of this, certain results about birational maps between projective spaces in characteristic zero are extended to any characteristic.

MSC:

14E05 Rational and birational maps
14E07 Birational automorphisms, Cremona group and generalizations
14M05 Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)

References:

[1] D. Bayer, M. Stillman, Macaulay: a computer algebra system for algebraic geometry, Macaulay version 3.0, 1994 (Macaulay for Windows by Bernd Johannes Wuebben, 1996).; D. Bayer, M. Stillman, Macaulay: a computer algebra system for algebraic geometry, Macaulay version 3.0, 1994 (Macaulay for Windows by Bernd Johannes Wuebben, 1996).
[2] Ciliberto, C.; Russo, F.; Simis, A., Homaloidal hypersurfaces and hypersurfaces with vanishing Hessian, Adv. Math., 218, 1759-1805 (2008) · Zbl 1144.14009
[3] Dolgachev, I. V., Polar Cremona transformations, Michigan Math. J., 48, 191-202 (2000) · Zbl 1080.14511
[4] Herzog, J.; Simis, A.; Vasconcelos, W. V., Koszul homology and blowing-up rings, (Greco, S.; Valla, G., Commutative Algebra. Commutative Algebra, Lect. Notes Pure Appl. Math., vol. 84 (1983), Marcel-Dekker: Marcel-Dekker New York), 79-169 · Zbl 0499.13002
[5] Hong, J.; Simis, A.; Vasconcelos, W. V., The equations of almost complete intersections (8 June 2009)
[6] Hulek, K.; Katz, S.; Schreyer, F.-O., Cremona transformations and syzygies, Math. Z., 209, 419-443 (1992) · Zbl 0767.14005
[7] Pan, I.; Russo, F., Cremona transformations and special double structures, Manuscripta Math., 117, 491-510 (2005) · Zbl 1093.14018
[8] Russo, F.; Simis, A., On birational maps and Jacobian matrices, Compos. Math., 126, 335-358 (2001) · Zbl 1036.14005
[9] Simis, A., Cremona transformations and some related algebras, J. Algebra, 280, 162-179 (2004) · Zbl 1067.14014
[10] Simis, A.; Ulrich, B.; Vasconcelos, W., Jacobian dual fibrations, Amer. J. Math., 115, 47-75 (1993) · Zbl 0791.13007
[11] Simis, A.; Ulrich, B.; Vasconcelos, W., Tangent star cones, J. Reine Angew. Math., 483, 23-59 (1997) · Zbl 0888.14001
[12] Simis, A.; Ulrich, B.; Vasconcelos, W. V., Codimension, multiplicity and integral extensions, Math. Proc. Cambridge Philos. Soc., 130, 237-257 (2001) · Zbl 1096.13500
[13] Simis, A.; Ulrich, B.; Vasconcelos, W. V., Rees algebras of modules, Proc. Lond. Math. Soc., 87, 610-646 (2003) · Zbl 1099.13008
[14] Simis, A.; Vasconcelos, W., The syzygies of the conormal module, Amer. J. Math., 103, 203-224 (1981) · Zbl 0467.13009
[15] Simis, A.; Villarreal, R. H., Constraints for the normality of monomial subrings and birationality, Proc. Amer. Math. Soc., 131, 2043-2048 (2003) · Zbl 1013.13011
[16] Simis, A.; Villarreal, R., Linear syzygies and birational combinatorics, Results Math., 48, 326-343 (2005) · Zbl 1107.13025
[17] A. Simis, R. Villarreal, Combinatorics of monomial Cremona maps, Math. Comp., in press.; A. Simis, R. Villarreal, Combinatorics of monomial Cremona maps, Math. Comp., in press. · Zbl 1259.14010
[18] Vasconcelos, W. V., Arithmetic of Blowup Algebras, London Math. Soc. Lecture Note Ser., vol. 195 (1994), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0813.13008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.