×

Free extensions and Lefschetz properties, with an application to rings of relative coinvariants. (English) Zbl 1461.13024

Broadly speaking, for a graded Artinian algebra \(A\), “Lefschetz properties” (weak and strong) refer to the study of the extent that multiplication by powers \(L^d\) of a general linear form \(L\), from any component \([A]_i\) of \(A\) to \([A]_{i+d}\), behave in an expected way: being either injective or surjective, depending on the dimensions of the components. (“Weak Lefschetz Property” is the case \(d=1\).) One way of measuring this extent is by studying the “Jordan type” of \(A\). This arises by looking at the multiplication map \(\times \ell : A \rightarrow A\), which is a nilpotent linear transformation, and studying its Jordan canonical form, encoded in a partition of \(N = \dim_k(A)\). This partition is called the Jordan type. From the introduction: “The goals of this paper are, first, to survey what we know about the Lefschetz and Jordan type properties for free extensions, and to present new results, especially about strong Lefschetz Jordan type ... Then we apply these results to relative coinvariant rings,” namely the quotient of the invariant ring of a finite subgroup by the ideal of invariants of a larger finite group containing it.

MSC:

13E10 Commutative Artinian rings and modules, finite-dimensional algebras
13A50 Actions of groups on commutative rings; invariant theory
13D40 Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
14C05 Parametrization (Chow and Hilbert schemes)
14L35 Classical groups (algebro-geometric aspects)
20F55 Reflection and Coxeter groups (group-theoretic aspects)

References:

[1] Altafi, N, Iarrobino, A, Khatami, L.Complete intersection Jordan types in height two. arXiv:math, AC/1810.00716 (2018), 46 p. · Zbl 1440.13084
[2] Boij, M.; Migliore, J.; Miró-Roig, RM, The non-Lefschetz locus, J Algebra, 505, 288-320 (2018) · Zbl 1393.13036 · doi:10.1016/j.jalgebra.2018.03.006
[3] Gondim, R., On higher Hessians and the Lefschetz properties, J Algebra, 489, 241-263 (2017) · Zbl 1387.13037 · doi:10.1016/j.jalgebra.2017.06.030
[4] Gondim, R.; Zappalà, G., Lefschetz properties for Artinian Gorenstein algebras presented by quadrics, Proc Amer Math Soc, 146, 3, 993-1003 (2018) · Zbl 1409.13002 · doi:10.1090/proc/13822
[5] Guerrieri, L.Lefschetz properties of Gorenstein graded algebras associated to the Apéry set of a numerical semigroup. arXiv:math,AC/1712.01569 v.2 (2018), 22 p. · Zbl 1419.13011
[6] Maeno, T.; Watanbe, J., Lefschetz elements of Artinian Gorenstein algebras and Hessians of homogeneous polynomials, Illinois J Math, 53, 2, 593-603 (2009) · Zbl 1200.13031 · doi:10.1215/ijm/1266934795
[7] Yoshida, S., The Lefschetz elements of coinvariant algebras of binary polyhedral groups, Tokyo J Math, 36, 2, 309-336 (2013) · Zbl 1297.20043 · doi:10.3836/tjm/1391177973
[8] Iarrobino, A, Macias Marques, P, McDaniel, C.Artinian algebras and Jordan type. arXiv:math.AC/1802.07383 v. 3 (2018), 35p.
[9] Iarrobino, A, Macias Marques, P, McDaniel, C.Artinian Gorenstein algebras that are free extensions over \(####\), and Macaulay duality. arXiv:math.AC/1807.02881 (2018), 23p.
[10] Harima, T.; Wachi, A.; Watanabe, J., The quadratic complete intersections associated with the action of the symmetric group, Illinois J Math, 59, 99-113 (2015) · Zbl 1336.13009 · doi:10.1215/ijm/1455203161
[11] Maeno, T.; Numata, Y.; Wachi, A., Strong Lefschetz elements of the coinvariant rings of finite Coxeter groups, Algebr Represent Theory, 4, 625-638 (2011) · Zbl 1250.13005 · doi:10.1007/s10468-010-9207-9
[12] McDaniel, C., The strong Lefschetz property for coinvariant rings of finite reflection groups, J Algebra, 331, 68-95 (2011) · Zbl 1244.13005 · doi:10.1016/j.jalgebra.2010.11.007
[13] Harima, T.; Watanabe, J., The strong Lefschetz property for Artinian algebras with non-standard grading, J Algebra, 311, 2, 511-537 (2007) · Zbl 1133.13021 · doi:10.1016/j.jalgebra.2007.01.019
[14] Iarrobino, A, Macias Marques, P, McDaniel, C.Free extensions and Jordan type. arXiv:math.AC/1806.02767 (2018), 33p.
[15] Harima, T.; Watanabe, J., The finite free extension of Artinian K-algebras with the strong Lefschetz property, Rend Semin Mat Univ Padova, 110, 119-146 (2003) · Zbl 1150.13305
[16] Harima, T.; Watanabe, J., Erratum to: ‘The finite free extension of Artinian K-algebras with the strong Lefschetz property’, Rend Semin Mat Univ Padova, 112, 237-238 (2004) · Zbl 1167.13308
[17] Harima, T.; Maeno, T.; Morita, H., The Lefschetz properties, 2080 (2013), Berlin: Springer, Berlin · Zbl 1284.13001
[18] Briançon, J., Description de Hilb \(####\), Invent Math, 41, 1, 45-89 (1977) · Zbl 0353.14004 · doi:10.1007/BF01390164
[19] Basili, R.; Iarrobino, A., Pairs of commuting nilpotent matrices, and Hilbert function, J Algebra, 320, 3, 1235-1254 (2008) · Zbl 1194.14011 · doi:10.1016/j.jalgebra.2008.03.006
[20] Lindsey, M., A class of Hilbert series and the strong Lefschetz property, Proc Amer Math Soc, 139, 1, 79-92 (2011) · Zbl 1219.13001 · doi:10.1090/S0002-9939-2010-10498-7
[21] Migliore, J, Nagel, U, Schenck, H.The Weak Lefschetz property for quotients by quadratic monomials. arXiv:math,AC/1706.05058 (2017), 15 p. · Zbl 1446.13012
[22] Babson, E.; Nevo, E., Lefschetz properties and basic constructions on simplicial spheres, J Algebraic Combin, 31, 1, 111-129 (2010) · Zbl 1193.52007 · doi:10.1007/s10801-009-0189-9
[23] Moore, JC; Smith, L., Hopf algebras and multiplicative fibrations. I, Amer J Math, 90, 752-780 (1968) · Zbl 0194.24501 · doi:10.2307/2373482
[24] Smith, L.; Stong, R., Projective bundle ideals and Poincaré Duality Algebras, J Pure Appl Algebra, 215, 4, 609-627 (2011) · Zbl 1206.13004 · doi:10.1016/j.jpaa.2010.06.011
[25] Smith, L., Invariants of coinvariant algebras, Forum Math, 27, 6, 3425-3437 (2015) · Zbl 1436.13014 · doi:10.1515/forum-2013-0151
[26] Shephard, GC; Todd, JA., Finite unitary reflection groups, Canad J Math, 6, 274-304 (1954) · Zbl 0055.14305 · doi:10.4153/CJM-1954-028-3
[27] Steinberg, R., Differential equations invariant under finite reflection groups, Trans Am Math Soc, 112, 392-400 (1964) · Zbl 0196.39202 · doi:10.1090/S0002-9947-1964-0167535-3
[28] Lehrer, GI; Taylor, DE., Unitary reflection groups (2009), Cambridge: Cambridge University Press, Cambridge · Zbl 1189.20001
[29] Borel, A., Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann Math (2), 57, 115-207 (1953) · Zbl 0052.40001 · doi:10.2307/1969728
[30] Bernstein, IN; Gelfand, IM; Gelfand, SI., Schubert cells and cohomology of the spaces G/P, Russian Math Surveys, 28, 3, 1-26 (1973) · Zbl 0289.57024 · doi:10.1070/RM1973v028n03ABEH001557
[31] Humphreys, JE., Reflection groups and Coxeter groups, 29 (1990), Cambridge: Cambridge University Press, Cambridge · Zbl 0725.20028
[32] Springer, TA., Linear algebraic groups (2009), Basel: Birkhäuser, Basel · Zbl 1202.20048
[33] Huybrechts, D., Complex geometry. An introduction (2005), Berlin: Springer, Berlin · Zbl 1055.14001
[34] Griffiths, P.; Harris, J., Principles of algebraic geometry (1994), New York, NY: John Wiley & Sons Ltd., New York, NY · Zbl 0836.14001
[35] Taylor, DE., Reflection subgroups of finite complex reflection groups, J Algebra, 366, 218-234 (2012) · Zbl 1263.20037 · doi:10.1016/j.jalgebra.2012.04.033
[36] Neusel, MD., Invariant theory, 36 (2007), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1110.13001
[37] Iarrobino, A., Associated graded algebra of a Gorenstein Artin algebra, 107 #514 (1994), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0793.13010
[38] Almkvist, G., Partitions into odd, unequal parts, J Pure Appl Algebra, 38, 121-126 (1985) · Zbl 0584.05005 · doi:10.1016/0022-4049(85)90003-9
[39] Almkvist, G., Representations of \(####\) and unimodal polynomials, J Algebra, 108, 283-309 (1987) · Zbl 0624.20028 · doi:10.1016/0021-8693(87)90103-7
[40] Almkvist, G., Proof of a conjecture about unimodal polynomials, J Number Theory, 32, 1, 43-57 (1989) · Zbl 0678.05002 · doi:10.1016/0022-314X(89)90096-6
[41] Stanley, RP.Log-concave and unimodal sequences in algebra, combinatorics, and geometry. Graph theory and its applications: East and West. Proceedings of the first China-USA international conference, held in Jinan, China, June 9-20, 1986, New York: New York Academy of Sciences; 1989. p. 500-535. · Zbl 0792.05008
[42] Hughes, JWB.Lie algebraic proofs of some theorems on partitions. In: Zassenhaus H, editor. Number theory and algebra. New York: Academic Press; 1977. p. 135-155. · Zbl 0372.10010
[43] Odlyzko, A.; Richmond, B., On the unimodality of some partition polynomials, European J Combin, 3, 6, 69-84 (1982) · Zbl 0482.10015 · doi:10.1016/S0195-6698(82)80010-3
[44] Kerber, A., Algebraic combinatorics via finite group actions (1991), Mannheim: Bibliographisches Institut, Mannheim · Zbl 0726.05002
[45] Migliore, J.; Nagel, U., Survey article: a tour of the weak and strong Lefschetz properties, J Commut Algebra, 5, 3, 329-358 (2013) · Zbl 1285.13002 · doi:10.1216/JCA-2013-5-3-329
[46] Meyer, DM; Smith, L., Poincaré duality algebras, Macaulay’s dual systems, and Steenrod operators (2005), Cambridge: Cambridge University Press, Cambridge · Zbl 1083.13003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.