×

Survival analysis for adverse events with varying follow-up times (SAVVY): rationale and statistical concept of a meta-analytic study. (English) Zbl 1523.62211

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

invGauss; R; metafor; mvna; etm

References:

[1] Aalen, O., Borgan, O., & Gjessing, H. (2008). Survival and event history analysis. Berlin, Germany: Springer Science & Business Media. · Zbl 1204.62165
[2] Aalen, O., & Johansen, S. (1978). An empirical transition matrix for non‐homogeneous Markov chains based on censored observations. Scandinavian Journal of Statistics, 5, 141-150. · Zbl 0383.62058
[3] Allignol, A., Beyersmann, J., & Schumacher, M. (2011). mvna: An R package for the Nelson-Aalen estimator in multistate models. R News, 8, 48-50.
[4] Allignol, A., Beyersmann, J., & Schmoor, C. (2016). Statistical issues in the analysis of adverse events in time‐to‐event data. Pharmaceutical Statistics, 15, 297-305.
[5] Allignol, A., Schumacher, M., & Beyersmann, J. (2011). Empirical transition matrix of multi‐state models: The etm package. Journal of Statistical Software, 38, 1-15.
[6] Altman, D. G., & Bland, J. M. (1983). Measurement in medicine: the analysis of method comparison studies. Journal of the Royal Statistical Society. Series D (The Statistician), 32, 307-317. http://www.jstor.org/stable/2987937.
[7] Andersen, P. K. (1983). Comparing survival distributions via hazard ratio estimates. Scandinavian Journal of Statistics, 10, 77-85. · Zbl 0526.62043
[8] Andersen, P. K., Angst, J., & Ravn, H. (2019). Modeling marginal features in studies of recurrent events in the presence of a terminal event. Lifetime Data Analysis, 25, 681-695. · Zbl 1436.62505
[9] Andersen, P. K., Borgan, O., Gill, R. D., & Keiding, N. (1993). Statistical models based on counting processes. Berlin, Germany: Springer Science & Business Media. · Zbl 0769.62061
[10] Bender, R., & Beckmann, L. (2019). Limitations of the incidence density ratio as approximation of the hazard ratio. Trials, 20, 485.
[11] Bender, R., Beckmann, L., & Lange, S. (2016). Biometrical issues in the analysis of adverse events within the benefit assessment of drugs. Pharmaceutical Statistics, 15, 292-296.
[12] Bender, R., Friede, T., Koch, A., Kuss, O., Schlattmann, P., Schwarzer, G., & Skipka, G. (2018). Methods for evidence synthesis in the case of very few studies. Research Synthesis Methods, 9, 382-392.
[13] Beyersmann, J., & Schmoor, C. (2019). The analysis of adverse events in randomized clinical trials. In S.Halabi (ed.) & S.Michiels (ed.) (Eds.), Textbook of clinical trials in oncology: a statistical perspective, (537-558). Boca Raton, FL: CRC Press.
[14] Beyersmann, J., & Schrade, C. (2017). Florence Nightingale, William Farr and competing risks. Journal of the Royal Statistical Society: Series A (Statistics in Society), 180, 285-293.
[15] Committee for Human Medicinal Products (2016). Guideline for good clinical practice E6(R2). Retrieved from https://www.ema.europa.eu/en/ich-e6-r2-good-clinical-practice#current-version-revision-2-section.
[16] Crowe, B. J., Xia, H. A., Berlin, J. A., Watson, D. J., Shi, H., Lin, S. L., .. et al,. (2009). Recommendations for safety planning, data collection, evaluation and reporting during drug, biologic and vaccine development: A report of the safety planning, evaluation, and reporting team. Clinical Trials, 6, 430-440.
[17] EMA (2009). A guideline on summary of product characteristics (SmPC). Retrieved from https://ec.europa.eu/health/sites/health/files/files/eudralex/vol-2/c/smpc_guideline_rev2_en.pdf.
[18] Ferreira‐González, I., Permanyer‐Miralda, G., Busse, J. W., Bryant, D. M., Montori, V. M., Alonso‐Coello, P., … Gordon, H. Guyatt (2017). Methodologic discussions for using and interpreting composite endpoints are limited, but still identify major concerns. Journal of Clinical Epidemiology, 60, 651-657.
[19] Gill, R. D., & Johansen, S. (1990). A survey of product‐integration with a view toward application in survival analysis. The Annals of Statistics, 18, 1501-1555. · Zbl 0718.60087
[20] Gosho, M., Sato, Y., Nagashima, K., & Takahashi, S. (2018). Trends in study design and the statistical methods employed in a leading general medicine journal. Journal of Clinical Pharmacy and Therapeutics, 43, 36-44.
[21] Gould, A.L. (2018). Unified screening for potential elevated adverse event risk and other associations. Statistics in Medicine, 37, 2667-2689.
[22] Günhan, B.K., Röver, C., & Friede, T. (2020). Meta‐analysis of few studies involving rare events. Research Synthesis Methods, 11, 74-90.
[23] Hedges, L. V., & Olkin, I. (2014). Statistical methods for meta‐analysis. New York: Academic press.
[24] Hjort, N. (1992). On inference in parametric survival data models. International Statistical Review, 60, 355-387. · Zbl 0762.62009
[25] Horton, N., & Switzer, S. (2005). Statistical methods in the journal. New England Journal of Medicine, 353, 1977-1979.
[26] IQWiG (2017). Allgemeine Methoden, Version 5.0. Institute of Quality and Efficiency in Health Care. Retrieved from https://www.iqwig.de/de/methoden/methodenpapier.3020.html.
[27] Kieser, M., & Hauschke, D. (2005). Assessment of clinical relevance by considering point estimates and associated confidence intervals. Pharmaceutical Statistics: The Journal of Applied Statistics in the Pharmaceutical Industry, 4, 101-107.
[28] Kraemer, H. C. (2009). Events per person‐time (incidence rate): a misleading statistic?Statistics in Medicine, 28, 1028-1039.
[29] Krouwer, J. S. (2008). Why Bland-Altman plots should use X, not (Y+ X)/2 when X is a reference method. Statistics in Medicine, 27, 778-780.
[30] Lacny, S., Wilson, T., Clement, F., Roberts, D. J., Faris, P., Ghali, W., & Marshall, D. (2015). Kaplan‐Meier survival analysis overestimates the risk of revision arthroplasty: a meta‐analysis. Clinical Orthopaedics and Related Research, 473, 3431-3442.
[31] Lacny, S., Wilson, T., Clement, F., Roberts, D. J., Faris, P., Ghali, W., & Marshall, D. (2018). Kaplan‐Meier survival analysis overestimates cumulative incidence of health‐related events in competing risk settings: a meta‐analysis. Journal of Clinical Epidemiology, 93, 25-35.
[32] Lawless, J. F., & Cook, R. J. (2019). A new perspective on loss to follow‐up in failure time and life history studies. Statistics in Medicine, 38, 4583-4610.
[33] O’Neill, R. T. (1987). Statistical analyses of adverse event data from clinical trials: Special emphasis on serious events. Drug Information Journal, 21, 9-20.
[34] Pocock, S. J., Clayton, T. C., & Altman, D. G. (2002). Survival plots of time‐to‐event outcomes in clinical trials: Good practice and pitfalls. The Lancet, 359, 1686-1689.
[35] R Core Team (2018). R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. Retrieved from https://www.R-project.org/.
[36] Rufibach, K. (2019). Treatment effect quantification for time‐to‐event endpoints – estimands, analysis strategies, and beyond. Pharmaceutical Statistics, 18, 145-165.
[37] Sato, Y., Gosho, M., Nagashima, K., Takahashi, S., Ware, J. H., & Laird, N. M. (2017). Statistical methods in the journal—An update. New England Journal of Medicine, 376, 1086-1087.
[38] Schumacher, M., Ohneberg, K., & Beyersmann, J. (2016). Competing risk bias was common in a prominent medical journal. Journal of Clinical Epidemiology, 80, 135-136.
[39] Siddiqui, O. (2009). Statistical methods to analyze adverse events data of randomized clinical trials. Journal of Biopharmaceutical Statistics, 19, 889-899.
[40] Therneau, T. M., & Grambsch, P. M. (2000). Modeling survival data: extending the Cox model. Berlin, Germany: Springer Science & Business Media. · Zbl 0958.62094
[41] Unkel, S., Amiri, M., Benda, N., Beyersmann, J., Knoerzer, D., Kupas, K., .. Friede, T. (2019). On estimands and the analysis of adverse events in the presence of varying follow‐up times within the benefit assessment of therapies. Pharmaceutical Statistics, 18, 166-183.
[42] van derVaart, A. W. (1998). Asymptotic statistics. Cambridge, UK: Cambridge University Press. · Zbl 0910.62001
[43] vanWalraven, C., & McAlister, F. A. (2016). Competing risk bias was common in Kaplan‐Meier risk estimates published in prominent medical journals. Journal of Clinical Epidemiology, 69, 170-173.
[44] Veroniki, A.A., Jackson, D., Bender, R., Kuss, O., Langan, D., Higgins, J.P.T., .. Salanti, G. (2019). Methods to calculate uncertainty in the estimated overall effect size from a random effects meta analysis. Research Synthesis Methods, 10, 23-43.
[45] Veroniki, A. A., Jackson, D., Viechtbauer, W., Bender, R., Bowden, J., Knapp, G., & Salanti, G. (2016). Methods to estimate the between‐study variance and its uncertainty in meta‐analysis. Research Synthesis Methods, 7, 55-79.
[46] Viechtbauer, W. (2010). Conducting meta‐analyses in R with the metafor package. Journal of Statistical Software, 36, 1-48.
[47] Windeler, J., & Lange, S. (1995). Events per person year—A dubious concept. British Medical Journal, 310, 454-456.
[48] Yang, F., Wittes, J., & Pitt, B. (2019). Beware of on‐treatment safety analyses. Clinical Trials, 16, 63-70. https://doi.org/10.1177/1740774518812774, pMID: 30445833. · doi:10.1177/1740774518812774
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.