×

Dirac operators on real spinor bundles of complex type. (English) Zbl 1491.53065

Let \(S\) be a real vector bundle over a connected pseudo-Riemannian manifold \((M,g)\) of signature \((p,q)\) and dimension \(d\). A Dirac operator \(D:\Gamma(S) \rightarrow \Gamma(S)\) is a first-order differential operator such that \(D^{2}\) has principal symbol: \[ \sigma(m,\xi)=g(\xi,\xi)\mathrm{Id}_{S} \ \ \ \ x\in M,\ \ \xi \in T^{*}M \ . \] The symbol of \(D\) induces a morphism of bundles \(\gamma:\mathrm{Cl}(M,g) \rightarrow \mathrm{End}(S)\) so that \((S, \gamma)\) becomes a bundle of irreducible real spinors.
Existence of irreducible real spinors on a bundle \(S\) is obstructed. The paper under review shows that, if \(p-q \equiv_{8} 3,7\), a bundle \(S\) has an irreducible Dirac operator if and only if \((M,g)\) admits an adapted \(\mathrm{Spin}^{0}\) structure. This is a principal \(\mathrm{Spin}^{0}_{p,q}\)-bundle \(Q\) over \(M\) endowed with a \(\tilde{\lambda}\)-equivariant map to the orthonormal coframe bundle of \((M,g)\), where \[ \mathrm{Spin}^{0}_{p,q}=\begin{cases} \mathrm{Spin}_{p,q}\mathrm{Pin}_{0,2} \ \ \ \ \ \ \text{if }p-q \equiv_{8} 3 \\ \mathrm{Spin}_{p,q}\mathrm{Pin}_{2,0} \ \ \ \ \ \ \text{if }p-q \equiv_{8} 7 \end{cases} \] and \(\tilde{\lambda}:\mathrm{Spin}^{0}_{p,q}\rightarrow \mathrm{0}(p,q)\) is a certain group homomorphism.

The authors characterize pseudo-Riemannian manifolds that admit an adapted \(\mathrm{Spin}^{0}_{p,q}\) structure in terms of the existence of principal \(\mathrm{O}(2)\)-bundles with certain Karoubi Stiefel-Whiteney classes.

MSC:

53C27 Spin and Spin\({}^c\) geometry
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics

References:

[1] Crabb, M. C.; Spreafico, M.; Sutherland, W. A., Enumerating projectively equivalent bundles, Math. Proc. Camb. Philos. Soc., 125, 223-242 (1999) · Zbl 0917.55011
[2] Friedrich, T.; Trautman, A., Spin spaces, Lipschitz groups and spinor bundles, Ann. Glob. Anal. Geom., 18, 3-4, 221-240 (2000) · Zbl 0964.15033
[3] Froyshov, K. A., 4−manifolds and intersection forms with local coefficients, J. Differ. Geom., 91, 2, 233-259 (2012) · Zbl 1257.57033
[4] Hausmann, J. C., Mod Two Homology and Cohomology (2014), Springer · Zbl 1310.55001
[5] Karoubi, M., Algebres de Clifford et K-theorie, Ann. Sci. Éc. Norm. Supér., 1, 2, 161-270 (1968) · Zbl 0194.24101
[6] Lazaroiu, C. I.; Shahbazi, C. S., On the spin geometry of supergravity and string theory, (Kielanowski, P.; Odzijewicz, A.; Previato, E., Geometric Methods in Physics XXXVI. Geometric Methods in Physics XXXVI, Trends in Mathematics (2019), Birkhäuser) · Zbl 1426.53068
[7] Lazaroiu, C. I.; Shahbazi, C., Real pinor bundles and real Lipschitz structures, Asian J. Math., 23, 5 (2019) · Zbl 1442.53038
[8] Lazaroiu, C. I.; Shahbazi, C. S., Complex Lipschitz structures and bundles of complex Clifford modules, Differ. Geom. Appl., 61, 147-169 (2018) · Zbl 1400.53038
[9] Nakamura, N., \( \operatorname{Pin}^-(2)\)-monopole equations and intersection forms with local coefficients of 4-manifolds, Math. Ann., 357, 915-939 (2013) · Zbl 1280.57027
[10] Nakamura, N., \( \operatorname{Pin}^-(2)\)-monopole invariants, J. Differ. Geom., 101, 3, 507-549 (2015) · Zbl 1398.57033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.