×

Neural network adaptive dynamic sliding mode formation control of multi-agent systems. (English) Zbl 1483.93053

Summary: This paper considers the problem of achieving time-varying formation for second-order multi-agent systems with actuator hysteresis, unknown system dynamics and external disturbances. A novel adaptive dynamic sliding mode scheme is developed to control a group of agents to follow desired trajectories. First, a dynamic sliding mode approach based on local formation tracking error is utilised to reject external disturbances and obtain smooth and chattering-free control input. Then, Chebyshev neural network is employed to estimate the nonlinear function related to the system’s dynamic equation. A smooth projection law is also applied to regulate the output of the neural network. Moreover, a Bouc-Wen hysteresis compensator has been added to the current control law to offset the known actuator hysteresis effect. Finally, a numerical simulation based on a multiple omni-directional robot system is presented to illustrate the performance of the proposed control law.

MSC:

93B12 Variable structure systems
93C40 Adaptive control/observation systems
93A16 Multi-agent systems
Full Text: DOI

References:

[1] Chen, B.; Cheng, H. H., A review of the applications of agent technology in traffic and transportation systems, IEEE Transactions on Intelligent Transportation Systems, 11, 2, 485-497 (2010) · doi:10.1109/TITS.2010.2048313
[2] Chen, B.; Wang, J.; Zhang, Y.; Liu, Z., Adaptive consensus of nonlinear multi-agent systems with unknown backlash-like hysteresis, Neurocomputing, 175, 698-703 (2016) · doi:10.1016/j.neucom.2015.10.114
[3] Dinh, V.-T.; Nguyen, H.; Shin, S.-M.; Kim, H.-K.; Kim, S.-B.; Byun, G.-S., Tracking control of omnidirectional mobile platform with disturbance using differential sliding mode controller, International Journal of Precision Engineering and Manufacturing, 13, 1, 39-48 (2012) · doi:10.1007/s12541-012-0006-6
[4] Dong, X.; Hua, Y.; Zhou, Y.; Ren, Z.; Zhong, Y., Theory and experiment on formation-containment control of multiple multirotor unmanned aerial vehicle systems, IEEE Transactions on Automation Science and Engineering, 16, 1, 229-240 (2018) · doi:10.1109/TASE.2018.2792327
[5] Dong, X.; Zhou, Y.; Ren, Z.; Zhong, Y., Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying, IEEE Transactions on Industrial Electronics, 64, 6, 5014-5024 (2016) · doi:10.1109/TIE.2016.2593656
[6] Lee, T.-T.; Jeng, J.-T., The Chebyshev-polynomials-based unified model neural networks for function approximation, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 28, 6, 925-935 (1998) · doi:10.1109/3477.735405
[7] Lewis, F. L.; Zhang, H.; Hengster-Movric, K.; Das, A., Cooperative control of multi-agent systems: Optimal and adaptive design approaches (2013), Springer Science & Business Media
[8] Liu, Z.; Lai, G.; Zhang, Y.; Chen, C. L. P., Adaptive neural output feedback control of output-constrained nonlinear systems with unknown output nonlinearity, IEEE Transactions on Neural Networks and Learning Systems, 26, 8, 1789-1802 (2015) · doi:10.1109/TNNLS.2014.2357036
[9] Liu, J.; Wang, X., Advanced sliding mode control for mechanical systems (2012), Springer · Zbl 1253.93002
[10] Liu, Y.; Yu, H.; Lim, C.-C.; Shi, P., Steady formation analysis on multi-robot systems, Journal of Control and Decision, 4, 1, 12-31 (2017) · doi:10.1080/23307706.2016.1254073
[11] Liu, Y.; Yu, H.; Shi, P.; Lim, C.-C., Formation control and collision avoidance for a class of multi-agent systems, Journal of the Franklin Institute, 356, 10, 5395-5420 (2019) · Zbl 1415.93023 · doi:10.1016/j.jfranklin.2019.05.008
[12] Ma, X.; Sun, F.; Li, H.; He, B., Neural-network-based integral sliding-mode tracking control of second-order multi-agent systems with unmatched disturbances and completely unknown dynamics, International Journal of Control, Automation and Systems, 15, 4, 1925-1935 (2017) · doi:10.1007/s12555-016-0057-z
[13] Meng, W.; He, Z.; Teo, R.; Su, R.; Xie, L., Integrated multi-agent system framework: Decentralised search, tasking and tracking, IET Control Theory and Applications, 9, 3, 493-502 (2014) · doi:10.1049/iet-cta.2014.0469
[14] Mu, B.; Zhang, K.; Shi, Y., Integral sliding mode flight controller design for a quadrotor and the application in a heterogeneous multi-agent system, IEEE Transactions on Industrial Electronics, 64, 12, 9389-9398 (2017) · doi:10.1109/TIE.2017.2711575
[15] Olfati-Saber, R.; Fax, J. A.; Murray, R. M., Consensus and cooperation in networked multi-agent systems, Proceedings of the IEEE, 95, 1, 215-233 (2007) · Zbl 1376.68138 · doi:10.1109/JPROC.2006.887293
[16] Olfati-Saber, R.; Murray, R. M., Consensus problems in networks of agents with switching topology and time-delays, IEEE Transactions on Automatic Control, 49, 9, 1520-1533 (2004) · Zbl 1365.93301 · doi:10.1109/TAC.2004.834113
[17] Peng, Z.; Wang, D.; Shi, Y.; Wang, H.; Wang, W., Containment control of networked autonomous underwater vehicles with model uncertainty and ocean disturbances guided by multiple leaders, Information Sciences, 316, 163-179 (2015) · Zbl 1417.93224 · doi:10.1016/j.ins.2015.04.025
[18] Ren, W.; Beard, R. W., Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE Transactions on Automatic Control, 50, 5, 655-661 (2005) · Zbl 1365.93302 · doi:10.1109/TAC.2005.846556
[19] Shen, Q.; Jiang, B.; Shi, P.; Zhao, J., Cooperative adaptive fuzzy tracking control for networked unknown nonlinear multiagent systems with time-varying actuator faults, IEEE Transactions on Fuzzy Systems, 22, 3, 494-504 (2013) · doi:10.1109/TFUZZ.2013.2260757
[20] Shen, Q.; Shi, P., Distributed command filtered backstepping consensus tracking control of nonlinear multiple-agent systems in strict-feedback form, Automatica, 53, 120-124 (2015) · Zbl 1371.93019 · doi:10.1016/j.automatica.2014.12.046
[21] Shi, P.; Shen, Q., Cooperative control of multi-agent systems with unknown state-dependent controlling effects, IEEE Transactions on Automation Science and Engineering, 12, 3, 827-834 (2015) · doi:10.1109/TASE.2015.2403261
[22] Tanaka, R.; Takahashi, H., Multi-agent simulation approach of pedestrian flow with group walking models, ICIC Express Letters, Part B: Applications, 11, 4, 363-371 (2020) · doi:10.24507/icicelb.11.04.363
[23] Tsai, C.-C.; Wu, H.-L.; Tai, F.-C.; Chen, Y.-S., Distributed consensus formation control with collision and obstacle avoidance for uncertain networked omnidirectional multi-robot systems using fuzzy wavelet neural networks, International Journal of Fuzzy Systems, 19, 5, 1375-1391 (2017) · doi:10.1007/s40815-016-0239-0
[24] Wang, Y., Cheng, L., Hou, Z.-G., Tan, M., & Yu, H. (2015). Coordinated transportation of a group of unmanned ground vehicles. In 2015 34th Chinese control conference (CCC) (pp. 7027-7032).
[25] Wang, C.; Tnunay, H.; Zuo, Z.; Lennox, B.; Ding, Z., Fixed-time formation control of multirobot systems: Design and experiments, IEEE Transactions on Industrial Electronics, 66, 8, 6292-6301 (2019) · doi:10.1109/TIE.2018.2870409
[26] Xiao, F.; Wang, L., Asynchronous consensus in continuous-time multi-agent systems with switching topology and time-varying delays, IEEE Transactions on Automatic Control, 53, 8, 1804-1816 (2008) · Zbl 1367.93255 · doi:10.1109/TAC.2008.929381
[27] Xu, J.; Fridman, E.; Fridman, L.; Niu, Y., Static sliding mode control of systems with arbitrary relative degree by using artificial delays, IEEE Transactions on Automatic Control (2020) · Zbl 1536.93140 · doi:10.1109/TAC.2020.2973598
[28] Xu, M.; Yang, P.; Wang, Y.; Shu, Q., Observer-based multi-agent system fault upper bound estimation and fault-tolerant consensus control, International Journal of Innovative Computing, Information and Control, 15, 2, 519-534 (2019) · doi:10.24507/ijicic.15.02.519
[29] Zhang, K.; Jiang, B.; Yan, X.-G.; Xia, J., Distributed fault diagnosis of multi-agent systems with time-varying sensor faults, ICIC Express Letters, 14, 2, 129-135 (2020) · doi:10.24507/icicel.14.02.129
[30] Zhang, R.; Song, B.; Pei, Y.; Yun, Q., Improved method for subsystems performance trade-off in system-of-systems oriented design of UAV swarms, Journal of Systems Engineering and Electronics, 30, 4, 720-737 (2019) · doi:10.21629/JSEE.2019.04.10
[31] Zhao, H.; Niu, Y.; Jia, T., Security control of cyber-physical switched systems under Round-Robin protocol: Input-to-state stability in probability, Information Sciences, 508, 121-134 (2020) · Zbl 1472.93159 · doi:10.1016/j.ins.2019.08.056
[32] Zhou, J.; Wen, C.; Li, T., Adaptive output feedback control of uncertain nonlinear systems with hysteresis nonlinearity, IEEE Transactions on Automatic Control, 57, 10, 2627-2633 (2012) · Zbl 1369.93323 · doi:10.1109/TAC.2012.2190208
[33] Zou, A.-M.; Kumar, K. D., Neural network-based adaptive output feedback formation control for multi-agent systems, Nonlinear Dynamics, 70, 2, 1283-1296 (2012) · Zbl 1268.93090 · doi:10.1007/s11071-012-0533-9
[34] Zou, A.-M.; Kumar, K. D.; Hou, Z.-G., Distributed consensus control for multi-agent systems using terminal sliding mode and Chebyshev neural networks, International Journal of Robust and Nonlinear Control, 23, 3, 334-357 (2013) · Zbl 1273.93015 · doi:10.1002/rnc.1829
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.