×

A “fundamental lemma” for continuous-time systems, with applications to data-driven simulation. (English) Zbl 1520.93209

Summary: We are given one input-output (i-o) trajectory \((u,y)\) produced by a linear, continuous time-invariant system, and we compute its Chebyshev polynomial series representation. We show that if the input trajectory \(u\) is sufficiently persistently exciting according to the definition in [P. Rapisarda et al., “A persistency of excitation condition for continuous-time systems”, IEEE Control Syst. Lett. 7, 589–594 (2023; doi:10.1109/LCSYS.2022.3205550)], then the Chebyshev polynomial series representation of every i-o trajectory can be computed from that of \((u,y)\). We apply this result to data-driven simulation of continuous-time systems.

MSC:

93C05 Linear systems in control theory
93B25 Algebraic methods

Software:

Chebfun

References:

[1] Willems, J. C.; Rapisarda, P.; Markovsky, I.; De Moor, B. L.M., A note on persistency of excitation, Systems Control Lett., 54, 4, 325-329 (2005) · Zbl 1129.93362
[2] Markovsky, I.; Rapisarda, P., Data-driven simulation and control, Internat. J. Control, 81, 12, 1946-1959 (2008) · Zbl 1151.93325
[3] Markovsky, I.; Willems, J. C.; Rapisarda, P.; Moor, B. L.D., Data driven simulation with applications to system identification, IFAC Proc. Vol., 38, 1, 970-975 (2005)
[4] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods: Fundamentals in Single Domains, Scientific Computation (2006), Springer-Verlag: Springer-Verlag Berlin Heidelberg · Zbl 1093.76002
[5] Rapisarda, P.; Çamlibel, M. K.; van Waarde, H. J., A persistency of excitation condition for continuous-time systems, IEEE Control Syst. Lett., 7, 589-594 (2023)
[6] Mühlpfordt, T.; Findeisen, R.; Hagenmeyer, V.; Faulwasser, T., Comments on truncation errors for polynomial chaos expansions, IEEE Control Syst. Lett., 2, 1, 169-174 (2018)
[7] Pan, G.; Ou, R.; Faulwasser, T., On a stochastic fundamental lemma and its use for data-driven optimal control, IEEE Trans. Automat. Control, 1-16 (2022)
[8] Polderman, J.; Willems, J., Introduction to mathematical systems theory: a behavioral approach, (Texts in Applied Mathematics, Vol. 26 (1997), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0940.93002
[9] Rapisarda, P.; Willems, J., State maps for linear systems, SIAM J. Control Optim., 35, 3, 1053-1091 (1997) · Zbl 0884.93006
[10] Trefethen, L. N., (Approximation Theory and Approximation Practice (2019), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA)
[11] Boyd, J. P., Chebyshev and Fourier Spectral Methods (2001), Dover · Zbl 0994.65128
[12] Sansone, G., Orthogonal functions, (Vol. 9 of Pure and Applied Mathematics (1959), Interscience Publishers: Interscience Publishers New York-London) · Zbl 0084.06106
[13] Aurentz, J. L.; Trefethen, L. N., Chopping a Chebyshev series, ACM Trans. Math. Software, 43, 4 (2017) · Zbl 1380.65032
[14] Tao, G., Adaptive Control Design and Analysis (2003), John Wiley & Sons Ltd · Zbl 1061.93004
[15] Padoan, A.; Scarciotti, G.; Astolfi, A., A geometric characterization of the persistence of excitation condition for the solutions of autonomous systems, IEEE Trans. Automat. Control, 62, 11, 5666-5677 (2017) · Zbl 1390.93224
[16] Willems, J. C., From time series to linear system, part I. Finite dimensional linear time invariant systems, Automatica, 22, 5, 561-580 (1986) · Zbl 0604.62090
[17] Driscoll, T.; Hale, N.; Trefethen, L., Chebfun Guide (2014), Pafnuty Publications: Pafnuty Publications Oxford
[18] V.G. Lopez, M.A. Müller, On a continuous-time version of Willems’ lemma, in: 2022 IEEE 61st Conference on Decision and Control, CDC, 2022, pp. 2759-2764.
[19] Bisoffi, A.; Persis, C. D.; Tesi, P., Data-driven control via Petersen’s lemma, Automatica, 145, Article 110537 pp. (2022) · Zbl 1498.93296
[20] R. Strässer, J. Berberich, F. Allgöwer, Data-driven control of nonlinear systems: Beyond polynomial dynamics, in: 60th IEEE Conference on Decision and Control, CDC, 2021, pp. 4344-4351.
[21] Persis, C. D.; Tesi, P., Formulas for data-driven control: Stabilization, optimality, and robustness, IEEE Trans. Automat. Control, 65, 3, 909-924 (2020) · Zbl 1533.93591
[22] Berberich, J.; Wildhagen, S.; Hertneck, M.; Allgöwer, F., Data-driven analysis and control of continuous-time systems under aperiodic sampling, IFAC-PapersOnLine, 54, 210-215 (2021), (Extended version at arXiv:2011.09221)
[23] Dai, T.; Sznaier, M., A semi-algebraic optimization approach to data-driven control of continuous-time nonlinear systems, IEEE Control Syst. Lett., 5, 2, 487-492 (2021)
[24] Natsukasa, Y. (2023), personal communication
[25] Boyd, J. P., Solving Transcendental Equations (2014), Society for Industrial and Applied Mathematics: Society for Industrial and Applied Mathematics Philadelphia, PA · Zbl 1311.65047
[26] Canuto, C.; Quarteroni, A., Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp., 38, 157, 67-86 (1982) · Zbl 0567.41008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.