×

Root counting, phase unwrapping, stability and stabilization of discrete time systems. (English) Zbl 0998.93035

Using standard and well-known arguments on the phase unwrapping (or phase net change) of discrete-time polynomials, it is shown how the number of stable (i.e. within the unit disk) roots is related to the distribution of real roots and signs of associated Chebyshev polynomials. An application to the very basic problem of constant feedback stabilization of a scalar linear discrete-time plant is described.

MSC:

93D15 Stabilization of systems by feedback
26C10 Real polynomials: location of zeros
12D10 Polynomials in real and complex fields: location of zeros (algebraic theorems)
93B25 Algebraic methods
93C55 Discrete-time control/observation systems
Full Text: DOI

References:

[1] A.B. Ozguler, A.A. Kocan, An analytic determination of stabilizing feedback gains, Report 321, Institut für Dynamische Systeme, Universität Bremen, September 1994; A.B. Ozguler, A.A. Kocan, An analytic determination of stabilizing feedback gains, Report 321, Institut für Dynamische Systeme, Universität Bremen, September 1994
[2] Ho, M. T.; Datta, A.; Bhattacharyya, S. P., Generalizations of the Hermite Biehler theorem, Linear Algebra Appl., 302-303, 135-153 (1999) · Zbl 0949.15037
[3] Ho, M. T.; Datta, A.; Bhattacharyya, S. P., Generalizations of the Hermite Biehler theorem: the complex case, Linear Algebra Appl., 320, 23-36 (2000) · Zbl 0968.15008
[4] Datta, A.; Ho, M. T.; Bhattacharyya, S. P., Structure and synthesis of PID controllers, (Advances in Industrial Control (2000), Springer: Springer London) · Zbl 1092.93500
[5] I. Yamada, N.K. Bose, Algebraic phase unwrapping and zero distribution of polynomial for continuous time systems, IEEE Trans. Circuits Syst. (submitted); I. Yamada, N.K. Bose, Algebraic phase unwrapping and zero distribution of polynomial for continuous time systems, IEEE Trans. Circuits Syst. (submitted) · Zbl 0970.93014
[6] Yamada, I.; Kurosawa, K.; Hasegawa, H.; Sakaniwa, K., Algebraic multidimensional phase unwrapping and zero distribution of complex polynomials—characterization of multivariate stable polynomials, IEEE Trans. Signal Process., 46, 6, 1639-1664 (1998) · Zbl 1026.94001
[7] Ackermann, J., Sampled Data Control Systems (1985), Springer: Springer New York · Zbl 0563.93019
[8] Pólya, G.; Szegó, G., Problems and Theorems in Analysis II (1976), Springer: Springer New York, (reprint of the 1976 edition) · Zbl 0311.00002
[9] Jury, E. I., Inners and Stability of Dynamic Systems (1974), Wiley: Wiley New York · Zbl 0307.93025
[10] Raible, R. H., A simplification of Jury’s tabular form, IEEE Trans. Autom. Control, 19, 248-250 (1974)
[11] Cohn, A., Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise, Math. Z., 14, 110-148 (1922) · JFM 48.0083.01
[12] Hermite, C., Sur le nombre de recines d’une équation algebrique comprise entre des limites données, J. Reine Angew. Math., 52, 39-51 (1856) · ERAM 052.1365cj
[13] Kharitonov, V. L., Asymptotic stability of an equilibrium position of a family of systems of linear differential equations, Differential Uravnen, 14, 2086-2088 (1978), (translation in Differential Equations 14 (1979) 1483-1485) · Zbl 0409.34043
[14] Mansour, M., (Leondes, C. T., Robust Stability in Systems Described by Rational Functions. Robust Stability in Systems Described by Rational Functions, Control and Dynamic Systems, vol. 51 (1992), Academic Press: Academic Press New York), 79-128 · Zbl 0781.93078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.