×

Convergence analysis of central and minimax algorithms in scalar regressor models. (English) Zbl 1082.62023

Summary: The estimation of a scalar parameter is considered with given lower and upper bounds of the scalar regressor. We derive non-asymptotic, lower and upper bounds on the convergence rates of the parameter estimate variances of the central and the minimax algorithms for noise probability density functions characterized by a thin tail distribution. This presents an extension of previous work for constant scalar regressors to arbitrary scalar regressors with magnitude constraints. We expect our results to stimulate further research interests in the statistical analysis of these set-based estimators when the unknown parameter is multi-dimensional and the probability distribution function of the noise is more general than the present setup.

MSC:

62F12 Asymptotic properties of parametric estimators
93E12 Identification in stochastic control theory
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
65C60 Computational problems in statistics (MSC2010)
Full Text: DOI

References:

[1] Abramowitz M, Stegun IA (1972) Handbook of mathematical functions with formulas, graphs, and mathematical Tables. vol 55. Applied Mathematics Series, National Bureau of Standards, Washington · Zbl 0543.33001
[2] Akçay, H., The size of the membership-set in a stochastic framework, Automatica, 40, 253-260 (2004) · Zbl 1048.93092
[3] Akçay, H.; Ninness, B., Rational basis functions for robust identification from frequency and time domain measurements, Automatica, 34, 1101-1117 (1998) · Zbl 0959.93012
[4] Akçay, H.; Hjalmarsson, H.; Ljung, L., On the choice of norms in system identification, IEEE Trans Automat Control, 41, 1367-1372 (1996) · Zbl 0863.93083
[5] At N, Akçay H (2004) Central and projection algorithms in set membership identification with periodic inputs. In: Proceedings of the 43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas, pp 5188-5191
[6] Bai, EW, An optimization based robust identification algorithm in the presence of outliers, J Global Optim, 23, 195-211 (2002) · Zbl 1026.93006
[7] Bai, EW; Tempo, R.; Cho, H., Membership set estimators: size, optimal inputs, complexity and relations with least squares, IEEE Trans Circuits Syst I: Fundamental Theory Appl, 42, 266-277 (1995) · Zbl 0878.93058
[8] Bai, EW; Cho, H.; Tempo, R., Convergence properties of the membership set, Automatica, 34, 1245-1249 (1998) · Zbl 0936.93017
[9] Bai, EW; Ye, Y.; Tempo, R., Bounded error parameter estimation: a sequential analytic center approach, IEEE Trans Automat Control, 44, 1107-1117 (1999) · Zbl 0967.93025
[10] Bai, EW; Fu, M.; Tempo, R.; Ye, Y., Convergence results of the analytic center estimator, IEEE Trans Automat Control, 45, 569-572 (2000) · Zbl 0971.93070
[11] Bai, EW; Cho, HT; Tempo, R.; Ye, YY, Optimization with few violated constraints for linear bounded error parameter estimation, IEEE Trans Automat Control, 47, 1067-1077 (2002) · Zbl 1364.93759
[12] Campi, MC; Weyer, E., Finite sample properties of system identification methods, IEEE Trans Automat Control, 47, 1329-1334 (2002) · Zbl 1364.93823
[13] Campi, MC; Ooi, SK; Weyer, E., Non-asymptotic quality assessment of FIR models with periodic input, Automat, 12, 2029-2041 (2004) · Zbl 1073.93517
[14] Dahleh, MA; Theodosopoulos, T.; Tsitsiklis, JN, The sample complexity of worst-case identification of FIR linear systems, Syst Control Lett, 20, 157-166 (1993) · Zbl 0769.93024
[15] David HA (1981) Order statistics. Wiley, New York · Zbl 0553.62046
[16] Harrison, KJ; Ward, JA; Gamble, DK, Sample complexity of worst-case identification, Syst Control Lett, 27, 255-260 (1996) · Zbl 0913.93014
[17] Harrison, KJ; Partington, JR; Ward, JA, Complexity of identification of linear systems with rational transfer functions, Math Control Signals and Sysems, 11, 265-288 (1998) · Zbl 0917.93013
[18] Kacewicz, B.; Milanese, M., Optimality properties in finite sample ℓ1 identification with bounded noise, Int J Adapt Control Signal Process, 9, 87-96 (1995) · Zbl 0819.93021
[19] Ljung L (1999) System Identification: theory for the user, 2nd edn. Prentice-Hall, Englewood Cliffs, NJ, USA · Zbl 0615.93004
[20] Mäkilä, PM, Robust identification and Galois sequences, Int J Control, 54, 1189-1200 (1991) · Zbl 0742.93017
[21] Milanese, M.; Tempo, R., Optimal algorithms theory for robust estimation and prediction, IEEE Trans Automat Control, 30, 730-738 (1995) · Zbl 0567.93024
[22] Partington, JR, Worst-case identification in ℓ2: linear and non-linear algorithms, Syst Control Lett, 22, 93-98 (1994) · Zbl 0792.93024
[23] Partington, JR, Interpolation in normed spaces from the values of linear functionals, Bull London Math Soc, 26, 165-170 (1994) · Zbl 0809.41004
[24] Partington, JR; Mäkilä, PM, Worst-case analysis of the least-squares method and related identification methods, Syst Control Lett, 24, 193-200 (1995) · Zbl 0877.93030
[25] Poolla, K.; Tikku, A., On the time complexity of worst-case system identification, IEEE Trans Automat Control, 39, 944-950 (1994) · Zbl 0813.93068
[26] Traub JF, Wasilkowski GW, Wozniakowski H (1988) Information based complexity theory. Academic Press, New York · Zbl 0654.94004
[27] Veres, SM; Norton, JP, Structure selection for bounded-parameter models: consistency conditions and selection criterion, IEEE Trans Automat Control, 36, 474-481 (1991)
[28] Weyer, E.; Williamson, RC; Mareels, IMY, Finite sample properties of linear model identification, IEEE Trans Automat Control, 44, 1370-1383 (1999) · Zbl 0962.93092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.