×

Eight perspectives on the exponentially ill-conditioned equation \(\varepsilon y'' - x y' + y = 0\). (English) Zbl 1437.65075

Summary: Boundary-value problems involving the linear differential equation \(\varepsilon y'' - x y' + y = 0\) have surprising properties as \(\varepsilon\to 0\). We examine this equation from eight points of view, showing how it sheds light on aspects of numerical analysis (backward error analysis and ill-conditioning), asymptotics (boundary layer analysis), dynamical systems (slow manifolds), ODE theory (Sturm-Liouville operators), spectral theory (eigenvalues and pseudospectra), sensitivity analysis (adjoints and SVD), physics (ghost solutions), and PDE theory (Lewy nonexistence).

MSC:

65L08 Numerical solution of ill-posed problems involving ordinary differential equations
34E20 Singular perturbations, turning point theory, WKB methods for ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
Full Text: DOI

References:

[1] R. C. Ackerberg and R. E. O’Malley, Jr., Boundary layer problems exhibiting resonance, Stud. Appl. Math., 49 (1970), pp. 277-295. · Zbl 0198.12901
[2] E. L. Allgower and K. Georg, Numerical Continuation Methods: An Introduction, Springer, 2012. · Zbl 0717.65030
[3] U. M. Ascher, R. M. M. Mattheij, and R. D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, SIAM, 1995, https://doi.org/10.1137/1.9781611971231. · Zbl 0843.65054
[4] J. L. Aurentz and L. N. Trefethen, Block operators and spectral discretizations, SIAM Rev., 59 (2017), pp. 423-446, https://doi.org/10.1137/16M1065975. · Zbl 1365.65153
[5] Z. Battles and L. N. Trefethen, An extension of MATLAB to continuous functions and operators, SIAM J. Sci. Comput., 25 (2004), pp. 1743-1770, https://doi.org/10.1137/S1064827503430126. · Zbl 1057.65003
[6] A. Ben-Artzi and I. Gohberg, Inertia theorems for nonstationary discrete systems and dichotomy, Linear Algebra Appl., 120 (1989), pp. 95-138. · Zbl 0677.93037
[7] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, Springer Science & Business Media, 2013. · Zbl 0417.34001
[8] M. Desroches, B. Krauskopf, and H. M. Osinga, Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system, Chaos, 18 (2008), art. 015107-1-8. · Zbl 1306.34050
[9] E. J. Doedel et al., AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations, Technical report, Dept. of Computer Science and Software Engineering, Concordia University, 2007; see http://cmvl.cs.concordia.ca/auto/.
[10] G. Domokos and P. Holmes, On nonlinear boundary-value problems: Ghosts, parasites and discretizations, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 459 (2003), pp. 1535-1561. · Zbl 1069.34020
[11] T. A. Driscoll, N. Hale, and L. N. Trefethen, Chebfun Guide, Pafnuty Press, 2014; see also www.chebfun.org.
[12] N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), pp. 53-98. · Zbl 0476.34034
[13] S. Filip, A. Javeed, and L. N. Trefethen, Smooth random functions, random ODEs, and Gaussian processes, SIAM Rev., 61 (2019), pp. 185-205, https://doi.org/10.1137/17M1161853 . · Zbl 1412.42006
[14] A. R. Forsyth, A Treatise on Differential Equations, BoD-Books on Demand, 2013, originally published in 1885.
[15] W. Gautschi, The condition of polynomials in power form, Math. Comp., 33 (1979), pp. 343-352. · Zbl 0399.41002
[16] C. W. Gear, T. J. Kaper, I. G. Kevrekidis, and A. Zagaris, Projecting to a slow manifold: Singularly perturbed systems and legacy codes, SIAM J. Appl. Dyn. Syst., 4 (2005), pp. 711-732, https://doi.org/10.1137/040608295. · Zbl 1170.34343
[17] M. B. Giles and N. A. Pierce, An introduction to the adjoint approach to design, Flow Turbulence Combust., 65 (2000), pp. 393-415. · Zbl 0996.76023
[18] M. Gomez, D. E. Moulton, and D. Vella, Critical slowing down in purely elastic “snap-through” instabilities, Nature Phys., 13 (2017), pp. 142-145.
[19] J. Grasman and B. J. Matkowsky, A variational approach to singularly perturbed boundary value problems for ordinary and partial differential equations with turning points, SIAM J. Appl. Math., 32 (1977), pp. 588-597, https://doi.org/10.1137/0132047. · Zbl 0392.34038
[20] P. P. N. de Groen, The nature of resonance in a singular perturbation problem of turning point type, SIAM J. Math. Anal., 11 (1980), pp. 1-22, https://doi.org/10.1137/0511001. · Zbl 0424.34021
[21] J. Guckenheimer, B. Krauskopf, H. M. Osinga, and B. Sandstede, Invariant manifolds and global bifurcations, Chaos, 25 (2015), art. 097604. · Zbl 1374.37076
[22] M. D. Gunzburger, Perspectives in Flow Control and Optimization, SIAM, 2002, https://doi.org/10.1137/1.9780898718720.
[23] S. M. Hammel, J. A. Yorke, and C. Grebogi, Do numerical orbits of chaotic dynamical processes represent true orbits?, J. Complexity, 3 (1987), pp. 136-145. · Zbl 0639.65037
[24] P. Hartman, Ordinary Differential Equations, SIAM, 2002, https://doi.org/10.1137/1.9780898719222. · Zbl 1009.34001
[25] C. R. Hasan, B. Krauskopf, and H. M. Osinga, Saddle slow manifolds and canard orbits in \({R}^4\) and application to the full Hodgkin-Huxley model, J. Math. Neurosci., 8 (2018), art. 5. · Zbl 1395.92038
[26] P. W. Hemker, A Numerical Study of Stiff Two-Point Boundary Problems, Math. Centre Tracts 80, Mathematisch Centrum, Amsterdam, 1977. · Zbl 0426.65043
[27] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, 2002, https://doi.org/10.1137/1.9780898718027. · Zbl 1011.65010
[28] D. Holcman and Z. Schuss, Asymptotics of Elliptic and Parabolic PDEs, Springer, 2018. · Zbl 1402.35004
[29] M. H. Holmes, Introduction to Perturbation Methods, 2nd ed., Springer, 2013. · Zbl 1270.34002
[30] L. Hörmander, Differential equations without solutions, Math. Ann., 140 (1960), pp. 169-173. · Zbl 0093.28903
[31] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer, 1976. · Zbl 0342.47009
[32] J. Kevorkian and J. D. Cole, Perturbation Methods in Applied Mathematics, Springer, 2010. · Zbl 0456.34001
[33] J. Kierzenka and L. F. Shampine, A BVP solver based on residual control and the MATLAB PSE, ACM Trans. Math. Softw., 27 (2001), pp. 299-316. · Zbl 1070.65555
[34] N. Kopell, A geometric approach to boundary layer problems exhibiting resonance, SIAM J. Appl. Math., 37 (1979), pp. 436-458, https://doi.org/10.1137/0137035. · Zbl 0417.34051
[35] H. O. Kreiss and S. V. Parter, Remarks on singular perturbations with turning points, SIAM J. Math. Anal., 5 (1974), pp. 230-251, https://doi.org/10.1137/0505025. · Zbl 0302.34074
[36] W. D. Lakin, Boundary value problems with a turning point, Stud. Appl. Math., 51 (1972), pp. 261-276. · Zbl 0257.34015
[37] J.-Y. Lee and L. Greengard, A fast adaptive numerical method for stiff two-point boundary value problems, SIAM J. Sci. Comput., 18 (1997), pp. 403-429, https://doi.org/10.1137/S1064827594272797. · Zbl 0882.65066
[38] H. Lewy, An example of a smooth linear partial differential equation without solution, Ann. Math., 66 (1957), pp. 155-158. · Zbl 0078.08104
[39] A. D. MacGillivray, A method for incorporating transcendentally small terms into the method of matched asymptotic expansions, Stud. Appl. Math., 99 (1997), pp. 285-310. · Zbl 0888.34051
[40] R. S. MacKay, Slow manifolds, in Energy Localisation and Transfer, T. Dauxois, A. Litvak-Hinenzon, R. Mackay, and A. Spanoudaki, eds., World Scientific, 2004, pp. 149-192. · Zbl 1090.82017
[41] B. J. Matkowsky, On boundary layer problems exhibiting resonance, SIAM Rev., 17 (1975), pp. 82-100, https://doi.org/10.1137/1017005.
[42] B. J. Matkowsky, Singular perturbations in noisy dynamical systems, European J. Appl. Math., 29 (2018), pp. 570-593. · Zbl 1394.37083
[43] S. Mizohata, Solutions nulles et solutions non analytiques, J. Math. Kyoto Univ., 1 (1962), pp. 271-302. · Zbl 0106.29601
[44] J. Mujica, B. Krauskopf, and H. M. Osinga, Tangencies between global invariant manifolds and slow manifolds near a singular Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 17 (2018), pp. 1395-1431, https://doi.org/10.1137/17M1133452. · Zbl 1393.37035
[45] F. W. J. Olver, Asymptotics and Special Functions, AK Peters/CRC Press, 1997. · Zbl 0982.41018
[46] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, eds., NIST Handbook of Mathematical Functions, Cambridge University Press, 2010. · Zbl 1198.00002
[47] S. Olver and A. Townsend, A fast and well-conditioned spectral method, SIAM Rev., 55 (2013), pp. 462-489, https://doi.org/10.1137/120865458. · Zbl 1273.65182
[48] R. E. O’Malley, Jr., On boundary value problems for a singularly perturbed differential equation with a turning point, SIAM J. Math. Anal., 1 (1970), pp. 479-490, https://doi.org/10.1137/0501041. · Zbl 0208.12301
[49] R. E. O’Malley, Jr., Singularly perturbed linear two-point boundary value problems, SIAM Rev., 50 (2008), pp. 459-482, https://doi.org/10.1137/060662058. · Zbl 1362.34092
[50] K. J. Palmer, Exponential dichotomies and Fredholm operators, Proc. Amer. Math. Soc., 104 (1988), pp. 149-156. · Zbl 0675.34006
[51] C. E. Pearson, On a differential equation of boundary layer type, J. Math. Phys., 47 (1968), pp. 134-154. · Zbl 0167.15801
[52] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1987. · Zbl 0925.00005
[53] K. K. Sharma, P. Rai, and K. C. Patidar, A review on singularly perturbed differential equations with turning points and interior layers, Appl. Math. Comput., 219 (2013), pp. 10575-10609. · Zbl 1302.34087
[54] I. Stakgold and M. J. Holst, Green’s Functions and Boundary Value Problems, Wiley, 2011. · Zbl 1221.35001
[55] S. H. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry and Engineering, Westview Press, 2015. · Zbl 1343.37001
[56] A. Tikhonov, On the dependence of the solutions of differential equations on a small parameter, Mat. Sb., 64 (1948), pp. 193-204. · Zbl 0037.34401
[57] A. Tikhonov, Systems of differential equations containing small parameters in the derivatives, Mat. Sb., 73 (1952), pp. 575-586. · Zbl 0048.07101
[58] L. N. Trefethen, Wave packet pseudomodes of variable coefficient differential operators, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), pp. 2099-3122. · Zbl 1206.34109
[59] L. N. Trefethen, A. Birkisson, and T. A. Driscoll, Exploring ODEs, SIAM, 2018. · Zbl 1402.34002
[60] L. N. Trefethen and M. Embree, Spectra and Pseudospectra, Princeton University Press, 2005. · Zbl 1085.15009
[61] A. B. Vasil’eva, V. F. Butuzov, and L. V. Kalachev, The Boundary Function Method for Singular Perturbation Problems, SIAM, 1995, https://doi.org/10.1137/1.9781611970784. · Zbl 0823.34059
[62] A. B. Vasilieva, On the development of singular perturbation theory at Moscow State University and elsewhere, SIAM Rev., 36 (1994), pp. 440-452, https://doi.org/10.1137/1036100. · Zbl 0808.34063
[63] M. I. Vishik and L. A. Lyusternik, Regular degeneration and boundary layer for linear differential equations with small parameter, Usp. Mat. Nauk, 12 (1957), pp. 3-122. · Zbl 0087.29602
[64] N. Wang and R. E. O’Malley, On the Asymptotic Solution of Singularly Perturbed Boundary Value Problems with Turning Points, manuscript, 2018.
[65] A. M. Watts, A singular perturbation problem with a turning point, Bull. Austr. Math. Soc., 5 (1971), pp. 61-73. · Zbl 0223.34051
[66] J. H. Wilkinson, Rounding Errors in Algebraic Processes, Prentice-Hall, 1963. · Zbl 1041.65502
[67] T. G. Wright, EigTool, https://github.com/eigtool/eigtool.
[68] M. Zworski, A remark on a paper of E. B. Davies, Proc. AMS, 129 (2001), pp. 2955-2957. · Zbl 0981.35107
[69] M. Zworski, Semiclassical Analysis, AMS, 2012. · Zbl 1252.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.