×

Fronts in the wake of a parameter ramp: slow passage through pitchfork and fold bifurcations. (English) Zbl 1541.34073

Summary: This work studies front formation in the Allen-Cahn equation with a parameter heterogeneity which slowly varies in space. In particular, we consider a heterogeneity which mediates the local stability of the zero state and subsequent pitchfork bifurcation to a nontrivial state. For slowly varying ramps which are either rigidly propagating in time or stationary, we rigorously establish existence and stability of positive, monotone fronts and give leading order expansions for their interface location. For nonzero ramp speeds, and sufficiently small ramp slopes, the front location is determined by the local transition between convective and absolute instability of the base state and leads to an \(\mathcal{O}(1)\) delay beyond the instantaneous pitchfork location before the system jumps to a nontrivial state. The slow ramp induces a further delay of the interface controlled by a slow passage through a fold of strong- and weak-stable eigenspaces of the associated linearization. We introduce projective coordinates to desingularize the dynamics near the trivial state and track relevant invariant manifolds all the way to the fold point. We then use geometric singular perturbation theory and blow-up techniques to locate the desired intersection of invariant manifolds. For stationary ramps, the front is governed by the slow passage through the instantaneous pitchfork bifurcation with inner expansion given by the unique Hastings-McLeod connecting solution of Painlevé’s second equation. We once again use geometric singular perturbation theory and blow-up techniques to track invariant manifolds into a neighborhood of the nonhyperbolic point where the ramp passes through zero and to locate intersections.

MSC:

34E15 Singular perturbations for ordinary differential equations
34E13 Multiple scale methods for ordinary differential equations
35B25 Singular perturbations in context of PDEs
35B36 Pattern formations in context of PDEs
35C07 Traveling wave solutions
35K55 Nonlinear parabolic equations

Software:

Chebfun; DLMF; AUTO; AUTO-07P

References:

[1] Baik, J., Buckingham, R., and DiFranco, J., Asymptotics of Tracy-Widom distributions and the total integral of a Painlevé II function, Comm. Math. Phys., 280 (2008), pp. 463-497, doi:10.1007/s00220-008-0433-5. · Zbl 1221.33032
[2] Carter, P. and Sandstede, B., Unpeeling a homoclinic banana in the FitzHugh-Nagumo system, SIAM J. Appl. Dyn. Syst., 17 (2018), pp. 236-349, doi:10.1137/16M1080707. · Zbl 1407.35015
[3] Clarkson, P. A., Painlevé equations-nonlinear special functions, J. Comput. Appl. Math., 153 (2003), pp. 127-140. · Zbl 1035.34101
[4] Cleri, N. J. and Dunne, G. V., Resurgent trans-series for generalized Hastings-McLeod solutions, J. Phys. A, 53 (2020), 355203, doi:10.1088/1751-8121/ab9fb8. · Zbl 1519.34106
[5] Coppel, W., Dichotomies in Stability Theory, , Springer-Verlag, Berlin, New York, 1978. · Zbl 0376.34001
[6] Couairon, A. and Chomaz, J.-M., Fully nonlinear global modes in slowly varying flows, Phys. Fluids, 11 (1999), pp. 3688-3703, doi:10.1063/1.870232. · Zbl 1149.76351
[7] Deift, P. A. and Zhou, X., Asymptotics for the Painlevé II equation, Comm. Pure Appl. Math., 48 (1995), pp. 277-337, doi:10.1002/cpa.3160480304. · Zbl 0869.34047
[8] Deng, B., Homoclinic bifurcations with nonhyperbolic equilibria, SIAM J. Math. Anal., 21 (1990), pp. 693-720, doi:10.1137/0521037. · Zbl 0698.34037
[9] NIST Digital Library of Mathematical Functions, Release 1.1.6 of 2022-06-30, Clark, C. W., Miller, B. R., Saunders, B. V., Cohl, H. S., and McClain, M. A., eds., 2022, http://dlmf.nist.gov/.
[10] Doedel, E. J., Champneys, A. R., Dercole, F., Fairgrieve, T. F., Kuznetsov, Y. A., Oldeman, B., Paffenroth, R., Sandstede, B., Wang, X., and Zhang, C., Auto-07p: Continuation and Bifurcation Software for Ordinary Differential Equations, 2007.
[11] Driscoll, T. A., Hale, N., and Trefethen, L. N., Chebfun Guide, Pafnuty Publications, Oxford, UK, 2014, http://www.chebfun.org/docs/guide/.
[12] Feng, J., Hsu, W.-H., Patterson, D., Tseng, C.-S., Hsing, H.-W., Zhuang, Z.-H., Huang, Y.-T., Faedo, A., Rubenstein, J. L., Touboul, J., and Chou, S.-J., COUP-TFI specifies the medial entorhinal cortex identity and induces differential cell adhesion to determine the integrity of its boundary with neocortex, Sci. Adv., 7 (2021), eabf6808, doi:10.1126/sciadv.abf6808.
[13] Fenichel, N., Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31 (1979), pp. 53-98, doi:10.1016/0022-0396(79)90152-9. · Zbl 0476.34034
[14] Goh, R., Quenched Stripes: Wavenumber Selection and Dynamics, SIAM DSWeb, 2021, https://dsweb.siam.org/The-Magazine/All-Issues/quenched-stripes-wavenumber-selection-and-dynamics-1.
[15] Goh, R. and de Rijk, B., Spectral stability of pattern-forming fronts in the complex Ginzburg-Landau equation with a quenching mechanism, Nonlinearity, 35 (2022), pp. 170-244. · Zbl 1482.35036
[16] Goh, R. and Scheel, A., Triggered fronts in the complex Ginzburg Landau equation, J. Nonlinear Sci., 24 (2014), pp. 117-144. · Zbl 1297.35224
[17] Goh, R. and Scheel, A., Growing Patterns, preprint, arXiv:2302.13486, 2023.
[18] Haberman, R., Slowly varying jump and transition phenomena associated with algebraic bifurcation problems, SIAM J. Appl. Math., 37 (1979), pp. 69-106, doi:10.1137/0137006. · Zbl 0417.34028
[19] Hastings, S. P., Private communication, 2022.
[20] Hastings, S. P. and McLeod, J. B., A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation, Arch. Ration. Mech. Anal., 73 (1980), pp. 31-51, doi:10.1007/BF00283254. · Zbl 0426.34019
[21] Henry, D., Geometric Theory of Semilinear Parabolic Equations, , Springer, Berlin, New York, 1981. · Zbl 0456.35001
[22] Hiscock, T. W. and Megason, S. G., Orientation of Turing-like patterns by morphogen gradients and tissue anisotropies, Cell Syst., 1 (2015), pp. 408-416, doi:10.1016/j.cels.2015.12.001.
[23] Holzer, M. and Scheel, A., A slow pushed front in a Lotka-Volterra competition model, Nonlinearity, 25 (2012), pp. 2151-2179, doi:10.1088/0951-7715/25/7/2151. · Zbl 1252.35106
[24] Hunt, R. E. and Crighton, D. G., Instability of flows in spatially developing media, Proc. Math. Phys. Sci., 435 (1991), pp. 109-128, http://www.jstor.org/stable/52004. · Zbl 0731.76032
[25] Jones, C. K. R. T., Geometric singular perturbation theory, in Dynamical Systems, Springer, Berlin, 1995, pp. 44-118, doi:10.1007/BFb0095239. · Zbl 0840.58040
[26] Kapitula, T. and Promislow, K., Spectral and Dynamical Stability of Nonlinear Waves, Springer, New York, 2013. · Zbl 1297.37001
[27] Kibble, T. W., Topology of cosmic domains and strings, J. Phys. A, 9 (1976), pp. 1387-1398. · Zbl 0333.57005
[28] Knobloch, E. and Krechetnikov, R., Problems on time-varying domains: Formulation, dynamics, and challenges, Acta Appl. Math., 137 (2015), pp. 123-157. · Zbl 1332.35004
[29] Kramer, L., Ben-Jacob, E., Brand, H., and Cross, M. C., Wavelength selection in systems far from equilibrium, Phys. Rev. Lett., 49 (1982), pp. 1891-1894, doi:10.1103/PhysRevLett.49.1891.
[30] Krupa, M. and Szmolyan, P., Extending geometric singular perturbation theory to nonhyperbolic points—fold and canard points in two dimensions, SIAM J. Math. Anal., 33 (2001), pp. 286-314, doi:10.1137/S0036141099360919. · Zbl 1002.34046
[31] Krupa, M. and Szmolyan, P., Extending slow manifolds near transcritical and pitchfork singularities, Nonlinearity, 14 (2001), pp. 1473-1491, doi:10.1088/0951-7715/14/6/304. · Zbl 0998.34039
[32] Kuske, R. and Eckhaus, W., Pattern formation in systems with slowly varying geometry, SIAM J. Appl. Math., 57 (1997), pp. 112-152, doi:10.1137/S0036139994277531. · Zbl 0870.35051
[33] Marée, G. J. M., Slow passage through a pitchfork bifurcation, SIAM J. Appl. Math., 56 (1996), pp. 889-918, doi:10.1137/S0036139993257399. · Zbl 0851.34038
[34] Monteiro, R., Horizontal patterns from finite speed directional quenching, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), pp. 3503-3534. · Zbl 1404.35039
[35] Monteiro, R. and Scheel, A., Phase separation patterns from directional quenching, J. Nonlinear Sci., 27 (2017), pp. 1339-1378. · Zbl 1378.35031
[36] Reed, M. and Simon, B., Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York, 1978. · Zbl 0401.47001
[37] Rehberg, I., Bodenschatz, E., Winkler, B., and Busse, F. H., Forced phase diffusion in a convection experiment, Phys. Rev. Lett., 59 (1987), pp. 282-284.
[38] Riecke, H., Pattern selection by weakly pinning ramps, Europhys. Lett., 2 (1986), 1.
[39] Riecke, H. and Paap, H.-G., Perfect wave-number selection and drifting patterns in ramped Taylor vortex flow, Phys. Rev. Lett., 59 (1987), pp. 2570-2573.
[40] Rietkerk, M., Bastiaansen, R., Banerjee, S., van de Koppel, J., Baudena, M., and Doelman, A., Evasion of tipping in complex systems through spatial pattern formation, Science, 374 (2021), eabj0359, doi:10.1126/science.abj0359.
[41] Sandstede, B. and Scheel, A., Absolute and convective instabilities of waves on unbounded and large bounded domains, Phys. D, 145 (2000), pp. 233-277. · Zbl 0963.34072
[42] Sell, G. R. and You, Y., Dynamics of Evolutionary Equations, , Springer-Verlag, New York, 2002. · Zbl 1254.37002
[43] Stoop, N. and Dunkel, J., Defect formation dynamics in curved elastic surface crystals, Soft Matter, 14 (2018), pp. 2329-2338.
[44] Troy, W. C., The role of Painlevé II in predicting new liquid crystal self-assembly mechanisms, Arch. Ration. Mech. Anal., 227 (2018), pp. 367-385, doi:10.1007/s00205-017-1162-8. · Zbl 1393.35210
[45] Zurek, W. H., Cosmological experiments in superfluid helium?, Nature, 317 (1985), pp. 505-508, doi:10.1038/317505a0.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.