×

Invariant surfaces with coordinate finite-type Gauss map in simply isotropic space. (English) Zbl 1468.53006

A surface is said to have coordinate finite-type Gauss map if \(\Delta G=-AG\), where \(G\) is the Gauss map of the surface and \(A=\operatorname{diag}(\lambda_1,\lambda_2,\lambda_3)\) is a diagonal matrix. A surface in the simply isotropic space \(\mathbb{I}^3\) is said to be invariant if there exists a 1-parameter subgroup that leaves it invariant. The aim of this paper is to characterize the invariant surfaces with coordinate finite-type Gauss map in \(\mathbb{I}^3\).
The authors consider two different normal Gauss maps: The first one, \(\mathbf{N}_m\), is called the minimal normal, since the trace of \(d\mathbf{N}_m\) vanishes identically, while the second one, \(G\), is called the parabolic normal, since it takes values on a unit sphere of parabolic type. In both cases, the authors obtain explicit formulas for the invariant coordinate finite-type Gauss map surfaces. Surfaces with harmonic normals, minimal or parabolic, without the invariant assumption, are also studied in the paper.

MSC:

53A40 Other special differential geometries
53B25 Local submanifolds

References:

[1] Alías, L. J.; Ferrández, A.; Lucas, P., Submanifolds in pseudo-Euclidean spaces satisfying the condition \(\operatorname{\Delta} x = A x + b\), Geom. Dedic., 42, 345-354 (1992) · Zbl 0755.53012
[2] Alías, L. J.; Ferrández, A.; Lucas, P., On the Gauss map of B-scrolls, Tsukuba J. Math., 22, 371-377 (1998) · Zbl 0915.53030
[3] Arroyo, J.; Garay, O. J.; Mencía, J. J., On a family of surfaces of revolution of finite Chen-type, Kodai Math. J., 21, 73-80 (1998) · Zbl 0908.53003
[4] Aydin, M. E.; Ergüt, M., Affine translation surfaces in the isotropic 3-space, Int. Electron. J. Geom., 10, 21-30 (2017) · Zbl 1365.53016
[5] Aydin, M. E.; Erdur, A.; Ergut, M., Affine factorable surfaces in isotropic spaces, TWMS J. Pure Appl. Math., 11, 72-88 (2020) · Zbl 1497.53031
[6] Baikoussis, C.; Blair, D. E., On the Gauss map of ruled surfaces, Glasg. Math. J., 34, 355-359 (1992) · Zbl 0762.53004
[7] Baikoussis, C.; Verstraelen, L., On the Gauss map of helicoidal surfaces, Rend. Sem. Mat. Messina Ser. II, 2, 31-42 (1993) · Zbl 0859.53001
[8] Bekkar, M.; Zoubir, H., Surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying \(\operatorname{\Delta} x_i = \lambda_i x_i\), Int. J. Contemp. Math. Sci., 3, 1173-1185 (2008) · Zbl 1160.53302
[9] Bukcu, B.; Karacan, M. K.; Yoon, D. W., Translation surfaces in the three-dimensional simply isotropic space \(\mathbb{I}_3^1\) satisfying \(\operatorname{\Delta}^{I I I} x_i = \lambda_i x_i\), Konuralp J. Math., 4, 275-281 (2016) · Zbl 1358.53020
[10] Bukcu, B.; Karacan, M. K.; Yoon, D. W., Translation surfaces of type-2 in the three-dimensional simply isotropic space \(\mathbb{I}_3^1\), Bull. Korean Math. Soc., 54, 953-965 (2017) · Zbl 1373.53013
[11] Cakmak, A.; Karacan, M. K.; Kiziltug, S., Dual surfaces defined by \(z = f(u) + g(v)\) in simply isotropic 3-space \(\mathbb{I}_3^1\), Commun. Korean Math. Soc., 34, 267-277 (2019) · Zbl 1426.53018
[12] Chen, B.-Y., Total Mean Curvature and Submanifolds of Finite Type (1984), World Scientific: World Scientific New Jersey · Zbl 0537.53049
[13] Chen, B.-Y., Surfaces of finite type in Euclidean 3-space, Bull. Soc. Math. Belg., Sér. B, 39, 243-254 (1987) · Zbl 0628.53011
[14] Chen, B.-Y., A report on submanifolds of finite type, Soochow J. Math., 22, 117-337 (1996) · Zbl 0867.53001
[15] Chen, B.-Y., Some open problems and conjectures on submanifolds of finite type: recent development, Tamkang J. Math., 45, 87-108 (2014) · Zbl 1287.53044
[16] Chen, B.-Y.; Piccinni, P., Submanifolds with finite type Gauss map, Bull. Aust. Math. Soc., 35, 161-186 (1987) · Zbl 0672.53044
[17] Chen, B.-Y.; Morvan, J.; Nore, T., Energy, tension and finite type maps, Kodai Math. J., 9, 406-418 (1986) · Zbl 0608.53054
[18] Choi, S. M., On the Gauss map of surfaces of revolution in a 3-dimensional Minkowski space, Tsukuba J. Math., 19, 351-367 (1995) · Zbl 0853.53014
[19] Choi, S. M., On the Gauss map of ruled surfaces in a 3-dimensional Minkowski space, Tsukuba J. Math., 19, 285-304 (1995) · Zbl 0855.53010
[20] da Silva, L. C.B., The geometry of Gauss map and shape operator in simply isotropic and pseudo-isotropic spaces, J. Geom., 110, 31 (2019) · Zbl 1418.51012
[21] da Silva, L. C.B., Rotation minimizing frames and spherical curves in simply isotropic and pseudo-isotropic 3-spaces, Tamkang J. Math., 51, 31-52 (2020) · Zbl 1450.51007
[22] da Silva, L. C.B., Differential geometry of invariant surfaces in simply isotropic and pseudo-isotropic spaces, Math. J. Okayama Univ. (2021), in press · Zbl 1468.53005
[23] Dillen, F.; Pas, J.; Verstraelen, L., On surfaces of finite type in Euclidean 3-space, Kodai Math. J., 13, 10-21 (1990) · Zbl 0705.53027
[24] Dillen, F.; Pas, J.; Verstraelen, L., On the Gauss map of surfaces of revolution, Bull. Inst. Math. Acad. Sin., 18, 239-246 (1990) · Zbl 0727.53005
[25] Garay, O. J., On a certain class of finite type surfaces of revolution, Kodai Math. J., 11, 25-31 (1988) · Zbl 0644.53049
[26] Garay, O. J., An extension of Takahashi’s theorem, Geom. Dedic., 34, 105-112 (1990) · Zbl 0704.53044
[27] Hamed, Ch. B.; Bekkar, M., Helicoidal surfaces in the three-dimensional Lorentz-Minkowski space satisfying \(\operatorname{\Delta} x_i = \lambda_i x_i\), Int. J. Contemp. Math. Sci., 4, 311-327 (2009) · Zbl 1179.53020
[28] Hasanis, T.; Vlachos, T., Coordinate finite-type submanifolds, Geom. Dedic., 37, 155-165 (1991) · Zbl 0718.53044
[29] Jang, C., Surfaces with 1-type Gauss map, Kodai Math. J., 19, 388-394 (1996) · Zbl 0871.53006
[30] Karacan, M. K.; Yoon, D. W.; Bukcu, B., Translation surfaces in the three-dimensional simply isotropic space \(\mathbb{I}_3^1\), Int. J. Geom. Methods Mod. Phys., 13, Article 1650088 pp. (2016) · Zbl 1345.53009
[31] Karacan, M. K.; Yoon, D. W.; Bukcu, B., Surfaces of revolution in the three-dimensional simply isotropic space \(\mathbb{I}_3^1\), Asia Pac. J. Math., 4, 1-10 (2017) · Zbl 1362.53023
[32] Karacan, M. K.; Yoon, D. W.; Kiziltug, S., Helicoidal surfaces in the three-dimensional simply isotropic space \(\mathbb{I}_3^1\), Tamkang J. Math., 48, 123-134 (2017) · Zbl 1371.53011
[33] Karacan, M. K.; Yoon, D. W.; Yuksel, N., Classification of some special types ruled surfaces in simply isotropic 3-space, An. Univ. Vest. Timiş., Ser. Mat.-Inform., 55, 87-98 (2017) · Zbl 1513.53030
[34] Kim, D.-S.; Kim, H. K., Shape operator and Gauss map of pointwise 1-type, J. Korean Math. Soc., 52, 1337-1346 (2015) · Zbl 1330.53009
[35] Müller, E., Relative Minimalflächen, Monatshefte Math. Phys., 31, 3-19 (1921) · JFM 48.0810.04
[36] Olver, F. W.J., Bessel functions of integer order, (Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions: With Formulas, Graphs and Mathematical Tables (1972), Dover: Dover New York), 355-434 · Zbl 0543.33001
[37] Sachs, H., Isotrope Geometrie des Raumes (1990), Vieweg: Vieweg Braunschweig/Wiesbaden · Zbl 0703.51001
[38] Sato, Y., d-minimal surfaces in three-dimensional singular semi-Euclidean space \(\mathbb{R}^{0 , 2 , 1} \), e-print · Zbl 1483.53011
[39] Senoussi, B.; Bekkar, M., Helicoidal surfaces with \(\operatorname{\Delta}^J r = A r\) in 3-dimensional Euclidean space, Stud. Univ. Babeş-Bolyai, Math., 60, 437-448 (2015) · Zbl 1374.53020
[40] Simon, U.; Schwenk-Schellschmidt, A.; Viesel, H., Introduction to the Affine Differential Geometry of Hypersurfaces (1991), Science University of Tokyo: Science University of Tokyo Tokyo
[41] Šipuš, Ž. M., Translation surfaces of constant curvatures in a simply isotropic space, Period. Math. Hung., 68, 160-175 (2014) · Zbl 1324.53009
[42] Tahakashi, T., Minimal immersions of Riemannian manifolds, J. Math. Soc. Jpn., 18, 380-385 (1966) · Zbl 0145.18601
[43] Turgay, N. C., Lorentzian submanifolds in semi-Euclidean spaces with pointwise 1-type Gauss map, (Geom. Integrability & Quantization, vol. 17 (2016)), 344-359 · Zbl 1345.53010
[44] Yoon, D. W., Some classification of translation surfaces in Galilean 3-spaces, Int. J. Math. Anal., 6, 1355-1361 (2012) · Zbl 1252.53017
[45] Yoon, D. W., Surfaces of revolution in the three dimensional pseudo-Galilean space, Glas. Mat., 48, 415-428 (2013) · Zbl 1303.53021
[46] Yoon, D. W., Classification of rotational surfaces in pseudo-Galilean space, Glas. Mat., 50, 453-465 (2015) · Zbl 1333.53021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.