×

Scale-free unique continuation estimates and Logvinenko-Sereda theorems on the torus. (English) Zbl 1454.35040

Summary: We study uncertainty principles for function classes on the torus. The classes are defined in terms of spectral subspaces of the energy or the momentum, respectively. In our main theorems, the support of the Fourier transform of the considered functions is allowed to be contained in (a finite number of) \(d\)-dimensional cubes. The estimates we obtain do not depend on the size of the torus and the position of the \(d\)-dimensional cubes, but only on their size and number, and the density and scale of the observability set. Our results are on the one hand closely related to unique continuation for linear combinations of eigenfunctions (aka spectral inequalities) which can be obtained by Carleman estimates, on the other hand to observability estimates for the time-dependent Schrödinger and for the heat equation, and finally to the Logvinenko and Sereda theorem. In fact, they are based on the methods developed by Kovrijkine to refine and generalize the results of Logvinenko and Sereda and Kacnel’son. Furthermore, relying on completely different techniques associated with the time-dependent Schrödinger equation, we prove a companion theorem where the energy of the considered functions is allowed to be in a spectral subspace of a Schrödinger operator.

MSC:

35B60 Continuation and prolongation of solutions to PDEs
35P15 Estimates of eigenvalues in context of PDEs
35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals

References:

[1] Anantharaman, N.: Private communication in Strasbourg (2016)
[2] Anantharaman, N.; Macià, F., Semiclassical measures for the Schrödinger equation on the torus, J. Eur. Math. Soc. (JEMS), 16, 6, 1253-1288 (2014) · Zbl 1298.42028 · doi:10.4171/JEMS/460
[3] Boas, RP Jr, Entire Functions (1954), New York: Academic Press Inc., New York · Zbl 0058.30201
[4] Bogachev, VI, Measure Theory (2007), Berlin: Springer, Berlin · Zbl 1120.28001
[5] Bourgain, J.: On the control problem for Schrödinger operators on tori. In: Geometric Aspects of Functional Analysis, Volume 2116 of Lecture Notes in Math, pp. 97-105. Springer, Cham (2014) · Zbl 1318.35093
[6] Bourgain, J.; Burq, N.; Zworski, M., Control for Schrödinger operators on 2-tori: rough potentials, J. Eur. Math. Soc. (JEMS), 15, 5, 1597-1628 (2013) · Zbl 1279.35016 · doi:10.4171/JEMS/399
[7] Burq, N.; Zworski, M., Control for Schrödinger operators on tori, Math. Res. Lett., 19, 2, 309-324 (2012) · Zbl 1281.35011 · doi:10.4310/MRL.2012.v19.n2.a4
[8] Combes, J-M; Hislop, PD; Klopp, F., Hölder continuity of the integrated density of states for some random operators at all energies, Int. Math. Res. Not., 4, 179-209 (2003) · Zbl 1022.47028 · doi:10.1155/S1073792803202099
[9] Donnelly, H.; Fefferman, C., Nodal sets of eigenfunctions on Riemannian manifolds, Invent. math., 93, 1, 161-183 (1988) · Zbl 0659.58047 · doi:10.1007/BF01393691
[10] Egidi, M., Nakić, I., Seelmann, A., Täufer, M., Tautenhahn, M., Veselić, I.: Null controllability and control cost estimates for the heat equation on unbounded and large bounded domains. In: Control Theory of Infinite-Dimensional Systems, Volume 277 of Operator Theory: Advances and Applications, pp. 117-157. Birkhäuser, Basel (2020) · Zbl 1483.35300
[11] Egidi, M., Seelmann, A.: The reflection principle in the control problem of the heat equation. arXiv:1902.08141
[12] Egidi, M.; Veselić, I., Sharp geometric condition for null-controllability of the heat equation on \(\mathbb{R}^d\) and consistent estimates on the control cost, Arch. Math. (Basel), 111, 1, 85-99 (2018) · Zbl 1394.35526
[13] Gallaun, D.; Seifert, C.; Tautenhahn, M., Sufficient criteria and sharp geometric conditions for observability in Banach spaces, SIAM J. Control Optim., 54, 1, 2639-2657 (2020) · Zbl 07268460 · doi:10.1137/19M1266769
[14] Germinet, F.; Klein, A., A comprehensive proof of localization for continuous Anderson models with singular random potentials, J. Eur. Math. Soc. (JEMS), 15, 1, 53-143 (2013) · Zbl 1267.82066 · doi:10.4171/JEMS/356
[15] Ghobber, S.; Jaming, P., The Logvinenko-Sereda theorem for the Fourier-Bessel transform, Integral Transforms Spec. Funct., 24, 6, 470-484 (2013) · Zbl 1273.42004 · doi:10.1080/10652469.2012.708868
[16] Havin, V.; Jöricke, B., The Uncertainty Principle in Harmonic Analysis. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) (1994), Berlin: Springer, Berlin · Zbl 0827.42001
[17] Jaming, P., Nazarov’s uncertainty principles in higher dimension, J. Approx. Theory, 149, 1, 30-41 (2007) · Zbl 1232.42013 · doi:10.1016/j.jat.2007.04.005
[18] Jerison, D.; Lebeau, G.; Christ, M.; Kenig, C.; Sadosky, C., Nodal sets of sums of eigenfunctions, Harmonic Analysis and Partial Differential Equations (Chicago, IL, 1996), 223-239 (1999), Chicago: University of Chicago Press, Chicago · Zbl 0946.35055
[19] Kacnel’son, VE, Equivalent norms in spaces of entire functions, Math. Sb. (N.S.), 92, 134, 34-54 (1973) · Zbl 0288.46024
[20] Kovrijkine, O.: Some Estimates of Fourier Transforms. Ph. D. Thesis, ProQuest LLC, Ann Arbor, MI—California Institute of Technology (2000)
[21] Kovrijkine, O., Some results related to the Logvinenko-Sereda theorem, Proc. Am. Math. Soc., 129, 10, 3037-3047 (2001) · Zbl 0976.42004 · doi:10.1090/S0002-9939-01-05926-3
[22] Logvinenko, VN; Sereda, JF, Equivalent norms in spaces of entire functions of exponential type, Teor. Funkc. Funkc. Anal. Prilož., Vyp. 20, 102-111 (1974) · Zbl 0312.46039
[23] Miller, L., Controllability cost of conservative systems: resolvent condition and transmutation, J. Funct. Anal., 218, 2, 425-444 (2005) · Zbl 1122.93011 · doi:10.1016/j.jfa.2004.02.001
[24] Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis. Volume 137 of Cambridge Studies in Advanced Mathematics, vol. I. Cambridge University Press, Cambridge (2013) · Zbl 1281.42002
[25] Nakić, I.; Täufer, M.; Tautenhahn, M.; Veselić, I., Unique continuation and lifting of spectral band edges of Schrödinger operators on unbounded domains. With an appendix by Albrecht Seelmann, J. Spectr. Theory (2018) · Zbl 1461.35171 · doi:10.4171/JST/314
[26] Nakić, I.; Täufer, M.; Tautenhahn, M.; Veselić, I., Scale-free unique continuation principle for spectral projectors, eigenvalue-lifting and Wegner estimates for random Schrödinger operators, Anal. PDE, 11, 4, 1049-1081 (2018) · Zbl 1383.35068 · doi:10.2140/apde.2018.11.1049
[27] Nakić, I.; Täufer, M.; Tautenhahn, M.; Veselić, I., Sharp estimates and homogenization of the control cost of the heat equation on large domains, ESAIM Control Optim. Calc. Var. (2020) · Zbl 1451.35241 · doi:10.1051/cocv/2019058
[28] Nazarov, FL, Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type, Algebra Anal., 5, 4, 3-66 (1993) · Zbl 0822.42001
[29] Panejah, BP, Some theorems of Paley-Wiener type, Soviet Math. Dokl., 2, 533-536 (1961) · Zbl 0101.32602
[30] Panejah, BP, On some problems in harmonic analysis, Dokl. Akad. Nauk SSSR, 142, 1026-1029 (1962) · Zbl 0115.09701
[31] Ramdani, K.; Takahashi, T.; Tenenbaum, G.; Tucsnak, M., A spectral approach for the exact observability of infinite-dimensional systems with skew-adjoint generator, J. Funct. Anal., 226, 1, 193-229 (2005) · Zbl 1140.93395 · doi:10.1016/j.jfa.2005.02.009
[32] Rojas-Molina, C.; Veselić, I., Scale-free unique continuation estimates and applications to random Schrödinger operators, Commun. Math. Phys., 320, 1, 245-274 (2013) · Zbl 1276.47051 · doi:10.1007/s00220-013-1683-4
[33] Seelmann, A.; Veselić, I., Exhaustion approximation for the control problem of the heat or Schrödinger semigroup on unbounded domains, Arch. Math. (Basel), 115, 2, 195-213 (2020) · Zbl 1442.35488 · doi:10.1007/s00013-020-01484-x
[34] Täufer, M.: Laplace-eigenfunctions on the torus with high vanishing order. arXiv:1710.09328
[35] Turán, P., On a New Method of Analysis and Its Applications (1984), New York: Wiley, New York · Zbl 0544.10045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.