×

A cellular structure of the space of branched coverings for the two-dimensional sphere. (English. Russian original) Zbl 1481.57024

St. Petersbg. Math. J. 32, No. 5, 885-904 (2021); translation from Algebra Anal. 32, No. 5, 86-113 (2020).
For a closed oriented surface \(\Sigma\), let \(X_{\Sigma,n}\) denote the set of isomorphism classes of \(n\)-sheeted coverings \(f:\Sigma\to S^2\) preserving orientation; here \(S^2\) is the two-dimensional sphere. The main goal of the paper is to define a structure of \(CW\)-complex on the compactification \(\bar{X}_{\Sigma,n}\) of \(X_{\Sigma,n}\) constructed in [V. I. Zvonilov and S. Yu. Orevkov, Proc. Steklov Inst. Math. 298, 118–128 (2017; Zbl 1387.30062); translation from Tr. Mat. Inst. Steklova 298, 127–138 (2017)]. In the cited paper, the authors constructed a cellular decomposition of \(\bar{X}_{\Sigma,n}\). Here they modify its construction and prove that it is a \(CW\)-complex.

Then they give an application of the obtained results to investigation of the spaces of \(j\)-invariants of trigonal curves on a ruled surface. In particular, they determine the fundamental group of the space of nonsingular trigonal curves; this fact plays an important role for understanding the topology of real algebraic varieties, in particular, of surfaces of degree \(5\) in the real projective space.

MSC:

57K20 2-dimensional topology (including mapping class groups of surfaces, Teichmüller theory, curve complexes, etc.)
57M10 Covering spaces and low-dimensional topology
14H30 Coverings of curves, fundamental group
30F99 Riemann surfaces

Citations:

Zbl 1387.30062

References:

[1] ZO V. I. Zvonilov and S. Yu. Orevkov, Compactification of the space of branched coverings of the two-dimensional sphere, Tr. Mat. Inst. Steklova 298 (2017), 127-138; English transl., Proc. Steklov Inst. Math. 298 (2017), 118-128. 3725052 · Zbl 1387.30062
[2] LZ S. K. Lando and A. K. Zvonkin, Graphs on surfaces and their applications, MCNMO, Moscow, 2010; English transl., Encyclopaedia Math. Sci., vol. 141, Springer-Verlag, Berlin, 2004. 2036721 · Zbl 1040.05001
[3] Or S. Yu. Orevkov, Riemann existence theorem and construction of real algebraic curves, Ann. Fac. Sci. Toulouse Math. (6) 12 (2003), no. 4, 517-531. 2060598 · Zbl 1078.14083
[4] Degt A. Degtyarev, Topology of algebraic curves. An approach via dessins d’enfants, De Gruyter Stud. Math., vol. 44, Walter de Gruyter & Co., Berlin, 2012. 2952675 · Zbl 1273.14065
[5] DE S. Diaz and D. Edidin, Towards the homology of Hurwitz spaces, J. Differential Geom. 43 (1996), no. 1, 66-98. 1424420 · Zbl 0848.14005
[6] NT S. Natanzon and V. Turaev, A compactification of the Hurwitz space, Topology 38 (1999), no. 4, 889-914. 1679803 · Zbl 0929.57001
[7] DD A. Dimca and S. Dimiev, On analytic coverings of weighted projective spaces, Bull. London Math. Soc. 17 (1985), no. 3, 234-238. 806423 · Zbl 0546.14006
[8] RF D. B. Fuks and V. A. Rokhlin, Beginner’s course in topology. Geometric chapters, Nauka, Moscow, 1977; English transl., Universitext, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1984. 759162 · Zbl 0562.54003
[9] VF O. Ya. Viro and D. B. Fuks, Homology and cohomology, Sovrem. Probl. Math. Fundamental Naprav., vol. 24, Itogi Nauki i Tekhniki, VINITI, Moscow, 1988, pp. 123-240; English transl., Encyclopaedia Math. Sci., vol. 24, Topology. II, Springer, Berlin, 2004, pp. 95-196. 2054457 · Zbl 0674.55002
[10] DIK A. Degtyarev, I. Itenberg, and V. Kharlamov, On deformation types of real elliptic surfaces, Amer. J. Math. 130 (2008), no. 6, 1561-1627. 2464028 · Zbl 1184.14065
[11] Dol I. Dolgachev, Weighted projective varieties, Lecture Notes in Math., vol. 956, Springer-Verlag, 1982, pp. 34-71. 704986 · Zbl 0516.14014
[12] M J. R. Munkres, Elements of algebraic topology, Addison-Wesley Publ., Menlo Park, CA, 1984. 755006 · Zbl 0673.55001
[13] C M. M. Cohen, Simplicial structures and transverse cellularity, Ann. of Math. (2) 85 (1967), no. 2, 218-245. 210143 · Zbl 0147.42602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.