×

Sensitivity of quantum walks to a boundary of two-dimensional lattices: approaches based on the CGMV method and topological phases. (English) Zbl 1386.82022

Summary: In this paper, we treat quantum walks in a two-dimensional lattice with cutting edges along a straight boundary introduced by Asboth and Edge (2015 Phys. Rev. A 91 022324) in order to study one-dimensional edge states originating from topological phases of matter and to obtain collateral evidence of how a quantum walker reacts to the boundary. Firstly, we connect this model to the CMV matrix, which provides a 5-term recursion relation of the Laurent polynomial associated with spectral measure on the unit circle. Secondly, we explicitly derive the spectra of bulk and edge states of the quantum walk with the boundary using spectral analysis of the CMV matrix. Thirdly, while topological numbers of the model studied so far are well-defined only when gaps in the bulk spectrum exist, we find a new topological number defined only when there are no gaps in the bulk spectrum. We confirm that the existence of the spectrum for edge states derived from the CMV matrix is consistent with the prediction from a bulk-edge correspondence using topological numbers calculated in the cases where gaps in the bulk spectrum do or do not exist. Finally, we show how the edge states contribute to the asymptotic behavior of the quantum walk through limit theorems of the finding probability. Conversely, we also propose a differential equation using this limit distribution whose solution is the underlying edge state.

MSC:

82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics

References:

[1] Ambainis A, Bach E, Nayak A, Vishwanath A and Watrous J 2012 One-dimensional quantum walks Proc. 33rd Annual ACM Symp. Theory of Computing pp 37-49 · Zbl 1323.81021
[2] Asbóth J K 2012 Symmetries, topological phases, and bound states in the one-dimensional quantum walk Phys. Rev. B 86 195414 · doi:10.1103/PhysRevB.86.195414
[3] Asbóth J K and Obuse H 2013 Bulk-boundary correspondence for chiral symmetric quantum walks Phys. Rev. B 88 121406 · doi:10.1103/PhysRevB.88.121406
[4] Asboth J K and Edge J M 2015 Edge-state-enhanced transport in a two-dimensional quantum walk Phys. Rev. A 91 022324 · doi:10.1103/PhysRevA.91.022324
[5] Avila J C, Schulz-Baldes H and Villegas-Blas C 2013 Topological invariants of edge states for periodic two-dimensional models Math. Phys. Anal. Geom.16 136-70 · Zbl 1271.81210 · doi:10.1007/s11040-012-9123-9
[6] Bernevig A B and Hughes T L 2013 Topological Insulators and Topological Supercnductors (Princeton, NJ: Princeton University Press) · Zbl 1269.82001 · doi:10.1515/9781400846733
[7] Cantero M J, Moral L and Velázquez L 2003 Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle Linear Algebr. Appl.362 29-56 · Zbl 1022.42013 · doi:10.1016/S0024-3795(02)00457-3
[8] Cantero M J, Moral L and Velázquez L 2005 Minimal representations of unitary operators and orthogonal polynomials on the unit circle Linear Algebr. Appl.405 40-65 · Zbl 1072.42020 · doi:10.1016/j.laa.2005.04.025
[9] Cantero M J, Grünbaum F A, Moral L and Velázquez L 2010 Matrix valued Szegö polynomials and quantum random walks Commun. Pure Appl. Math.63 464-507 · Zbl 1186.81036
[10] Cedzich C, Geib T, Grunbaum F A, Stahl C, Velazquez L, Werner A H and Werner R F 2016 The topological classification of one-dimensional symmetric quantum walks (arXiv:1611.04439) · Zbl 1342.82064
[11] Cedzich C, Grunbaum F A, Stahl C, Velazquez L, Werner A H and Werner R F 2016 Bulk-edge correspondence of one-dimensional quantum walks J. Phys. A: Math. Theor.49 21 · Zbl 1342.82064 · doi:10.1088/1751-8113/49/21/21LT01
[12] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Classification of topological quantum matter with symmetries Rev. Mod. Phys.88 035005 · doi:10.1103/RevModPhys.88.035005
[13] Endo T, Konno N and Obuse H 2015 Relation between two-phase quantum walks and the topological invariant (arXiv:1511.04230)
[14] Endo S, Endo T, Konno N, Segawa E and Takei M 2015 Limit theorems of a two-phase quantum walk with one defect Quantum Inf. Comput.15 1373-96
[15] Di Franco C, McGettrick M and Busch Th 2011 Mimicking the probability distribution of a two-dimensional Grover walk with a single-qubit coin Phys. Rev. Lett.106 080502 · doi:10.1103/PhysRevLett.106.080502
[16] Di Franco C, McGettrick M, Machida T and Busch Th 2011 Alternate two-dimensional quantum walk with a single-qubit coin Phys. Rev. A 84 042337 · doi:10.1103/PhysRevA.84.042337
[17] Gudder S 1988 Quantum Probability (New York: Academic) · Zbl 0652.60004
[18] Graf G M and Porta M 2013 Bulk-edge correspondence for two-dimensional topological insulators Commun. Math. Phys.324 851-95 · Zbl 1291.82120 · doi:10.1007/s00220-013-1819-6
[19] Hasan M Z and Kane C L 2010 Colloquium: Topological insulators Rev. Mod. Phys.82 3045-67 · doi:10.1103/RevModPhys.82.3045
[20] Kitagawa T, Rudner M S, Berg E and Demler E 2010 Exploring topological phases with quantum walks Phys. Rev. A 82 033429 · doi:10.1103/PhysRevA.82.033429
[21] Kitagawa E, Berg E, Rudner M and Demler E 2010 Topological characterization of periodically driven quantum systems Phys. Rev. B 83 235114 · doi:10.1103/PhysRevB.82.235114
[22] Kitagawa T 2012 Topological phenomena in quantum walks; elementary introduction to the physics of topological phases Quantum Inf. Proc.11 1107-48 · Zbl 1252.82088
[23] Konno N 2002 Quantum random walks in one dimension Quantum Inf. Proc.1 345-54 · Zbl 1329.82012
[24] Konno N 2005 A new type of limit theorems for the one-dimensional quantum random walk J. Math. Soc. Jpn.57 1179-95 · Zbl 1173.81318 · doi:10.2969/jmsj/1150287309
[25] Konno N and Segawa E 2011 Localization of discrete time quantum walks on a half line via the CGMV method Quantum Inf. Comput.11 485-95 · Zbl 1238.81073
[26] Manouchehri K and Wang J B 2014 Physical Implementation of Quantum Walks(Quantum Science and Technology) (Berlin: Springer) · Zbl 1278.81010 · doi:10.1007/978-3-642-36014-5
[27] Linder N H, Refael G and Galitski V 2011 Floquet topological insulator in semiconductor quantum wells Nat. Phys.7 490495 · doi:10.1038/nphys1926
[28] Obuse H, Asbóth J K, Nishimura Y and Kawakami N 2015 Unveiling hidden topological phases of a one-dimensional Hadamard quantum walk Phys. Rev. B 92 045424 · doi:10.1103/PhysRevB.92.045424
[29] Obuse H and Kawakami N 2011 Topological phases and delocalization of quantum walks in random environments Phys. Rev. B 84 195139 · doi:10.1103/PhysRevB.84.195139
[30] Portugal R 2013 Quantum Walks and Search Algorithms(Quantum Science and Technology) (Berlin: Springer) · Zbl 1275.81004 · doi:10.1007/978-1-4614-6336-8
[31] Qi X Land Zhang S C 2011 Topological insulators and superconductors Rev. Mod. Phys.83 1057-1110 · doi:10.1103/RevModPhys.83.1057
[32] Rudner M S, Lindner N H, Berg E and Levin M 2013 Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems Phys. Rev. X 3 031005 · doi:10.1103/physrevx.3.031005
[33] Schnyder A P, Ryu S, Furusaki A and Ludwig A W W 2008 Classification of topological insulators and superconductors in three spatial dimensions Phys. Rev. B 78 195125 · doi:10.1103/PhysRevB.78.195125
[34] Schulz-Baldes H and Villegas-Blas C 2016 Krein signatures of transfer operators for half-space topological insulators J. Phys. A: Math. Theor.49 405201 · Zbl 1353.82069 · doi:10.1088/1751-8113/49/40/405201
[35] Schnyder A P and Ryu S 2011 Topological phases and surface flat bands in superconductors without inversion symmetry Phys. Rev. B 84 060504 · doi:10.1103/PhysRevB.84.060504
[36] Volovik G E 2007 Quantum phase transitions from topology in momentum space Lect. Notes Phys.718 31-73 · Zbl 1142.83008 · doi:10.1007/3-540-70859-6_3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.