×

Orthogonal Laurent polynomials on the unit circle and snake-shaped matrix factorizations. (English) Zbl 1180.42016

Summary: Let there be given a probability measure \(\mu \) on the unit circle \(\mathbb T\) of the complex plane and consider the inner product induced by \(\mu \). In this paper we consider the problem of orthogonalizing a sequence of monomials \(\{z^{r_k}\}_k\), for a certain order of the \(r_k\in \mathbb Z\), by means of the Gram-Schmidt orthogonalization process. This leads to a sequence of orthonormal Laurent polynomials \(\{\psi _k\}_k\). We show that the matrix representation with respect to \(\{\psi _k\}_k\) of the operator of multiplication by \(z\) is an infinite unitary or isometric matrix allowing a ‘snake-shaped’ matrix factorization. Here the ‘snake shape’ of the factorization is to be understood in terms of its graphical representation via sequences of little line segments, following an earlier work of S. Delvaux and M. Van Barel. We show that the shape of the snake is determined by the order in which the monomials \(\{z^{r_k}\}_k\) are orthogonalized, while the ‘segments’ of the snake are canonically determined in terms of the Schur parameters for \(\mu \). Isometric Hessenberg matrices and unitary five-diagonal matrices (CMV matrices) follow as a special case of the presented formalism.

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
65F30 Other matrix algorithms (MSC2010)
40C05 Matrix methods for summability

Software:

UDC

References:

[1] G.S. Ammar, W.B. Gragg, L. Reichel, On the eigenproblem for orthogonal matrices, in: 25th IEEE Conference on Decision and Control, Athens, Greece, 1963-1966, 1986; G.S. Ammar, W.B. Gragg, L. Reichel, On the eigenproblem for orthogonal matrices, in: 25th IEEE Conference on Decision and Control, Athens, Greece, 1963-1966, 1986
[2] Ammar, G. S.; Reichel, L.; Sorensen, D. C., An implementation of a divide and conquer algorithm for the unitary eigenproblem, ACM Trans. Math. Software, 18, 3, 292-307 (1992) · Zbl 0892.65025
[3] Bultheel, A.; Daruis, L.; González-Vera, P., A connection between quadrature formulas on the unit circle and the interval \([- 1, 1]\), J. Comput. Appl. Math., 132, 1-14 (2001) · Zbl 0985.41021
[4] Bunste-Gerstner, A.; Elsner, L., Schur parameter pencils for the solution of the unitary eigenproblem, Linear Algebra Appl., 154-156, 741-778 (1992) · Zbl 0741.65029
[5] Bunse-Gerstner, A.; He, C., On a Sturm sequence of polynomials for unitary Hessenberg matrices, SIAM J. Matrix Anal. Appl., 16, 4, 1043-1055 (1995) · Zbl 0839.65044
[6] Cantero, M. J.; Cruz-Barroso, R.; González-Vera, P., A matrix approach to the computation of quadrature formulas on the unit circle, Appl. Numer. Math., 58, 3, 296-318 (2008) · Zbl 1139.65015
[7] Cantero, M. J.; Moral, L.; Velázquez, L., Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle, Linear Algebra Appl., 362, 29-56 (2003) · Zbl 1022.42013
[8] Cantero, M. J.; Moral, L.; Velázquez, L., Minimal representations of unitary operators and orthogonal polynomials on the unit circle, Linear Algebra Appl., 408, 40-65 (2005) · Zbl 1072.42020
[9] Chandrasekaran, S.; Gu, M.; Xia, J.; Zhu, J., A fast QR algorithm for companion matrices, Recent Adv. Matrix Operator Theory, 179, 111-143 (2007) · Zbl 1136.65041
[10] Cruz-Barroso, R.; González-Vera, P., A Christoffel-Darboux formula and a Favard’s theorem for orthogonal Laurent polynomials on the unit circle, J. Comput. Appl. Math., 179, 157-173 (2005) · Zbl 1088.42014
[11] Cruz-Barroso, R.; González-Vera, P., Orthogonal Laurent polynomials and quadratures on the unit circle and the real half-line, Electron. Trans. Numer. Anal., 19, 113-134 (2005) · Zbl 1092.42015
[12] Cruz-Barroso, R.; Daruis, L.; González-Vera, P.; Njåstad, O., Sequences of orthogonal Laurent polynomials, bi-orthogonality and quadrature formulas on the unit circle, J. Comput. Appl. Math., 200, 424-440 (2007) · Zbl 1136.42020
[13] Delvaux, S.; Van Barel, M., Unitary rank structured matrices, J. Comput. Appl. Math., 215, 1, 49-78 (2008) · Zbl 1136.65045
[14] Delvaux, S.; Van Barel, M., Eigenvalue computation for unitary rank structured matrices, J. Comput. Appl. Math., 213, 1, 268-287 (2008) · Zbl 1132.65026
[15] Gill, P. E.; Golub, G. H.; Murray, W.; Saunders, M. A., Methods for modifying matrix factorizations, Math. Comp., 28, 505-535 (1974) · Zbl 0289.65021
[16] L. Golinskii, M. Kudryavtsev, An inverse spectral theory for finite CMV matrices, (in press) arXiv:0705.4353; L. Golinskii, M. Kudryavtsev, An inverse spectral theory for finite CMV matrices, (in press) arXiv:0705.4353 · Zbl 1191.15008
[17] Golub, G. H.; Van Loan, C. F., Matrix Computations (1996), The Johns Hopkins University Press · Zbl 0865.65009
[18] Gragg, W. B., Positive definite Toeplitz matrices, the Arnoldi process for isometric operators and Gaussian quadrature on the unit circle, J. Comput. Appl. Math., 46, 183-198 (1993), This is a slightly revised version of a paper by the same author and published in Russian in: E. S. Nicholaev editor, Numer. Meth. Lin. Alg., Moscow University Press, Moscow (1982), 16-32 · Zbl 0777.65013
[19] Gragg, W. B., The QR algorithm for unitary Hessenberg matrices, J. Comput. Appl. Math., 16, 1-8 (1986) · Zbl 0623.65041
[20] Grenander, U.; Szegő, G., Toeplitz Forms and Their Applications (1984), Chelsea: Chelsea New York, NY · Zbl 0611.47018
[21] Gu, M.; Guzzo, R.; Chi, X.-B.; Cao, X.-Q., A stable divide and conquer algorithm for the unitary eigenproblem, SIAM J. Matrix Anal. Appl., 25, 385-404 (2003) · Zbl 1053.65026
[22] Jagels, C.; Reichel, L., Szegő-Lobatto quadrature rules, J. Comput. Appl. Math., 200, 116-126 (2007) · Zbl 1109.65027
[23] Jones, W. B.; Njåstad, O.; Thron, W. J., Moment theory, orthogonal polynomials, quadrature, and continued fractions associated with the unit circle, Bull. London Math. Soc., 21, 113-152 (1989) · Zbl 0637.30035
[24] Killip, R.; Nenciu, I., CMV: the unitary analogue of Jacobi matrices, Comm. Pure Appl. Math., 60, 1148-1188 (2007) · Zbl 1128.15012
[25] Nenciu, I., CMV matrices in random matrix theory and integrable systems: A survey, J. Phys. A: Math. Gen., 39, 28, 8811-8822 (2006) · Zbl 1098.15019
[26] Rutishauser, H., Bestimmung der eigenwerte orthogonaler matrizen, Numer. Math., 9, 104-108 (1966) · Zbl 0171.13406
[27] Simon, B., (Orthogonal Polynomials on the Unit Circle. Part 1: Classical Theory. Orthogonal Polynomials on the Unit Circle. Part 1: Classical Theory, Amer. Math. Soc. Coll. Publ., vol. 54 (2005), Amer. Math. Soc: Amer. Math. Soc Providence, R.I) · Zbl 1082.42020
[28] Simon, B., CMV matrices: Five years after, J. Comput. Appl. Math., 208, 1, 120-154 (2007) · Zbl 1125.15027
[29] Stewart, M., An error analysis of a unitary Hessenberg QR algorithm, SIAM J. Matrix Anal. Appl., 28, 1, 40-67 (2006) · Zbl 1119.65024
[30] Szegő, G., Orthogonal polynomials, (Amer. Math. Soc. Coll. Publ., vol. 23 (1975), Amer. Math. Soc: Amer. Math. Soc Providence, R.I) · JFM 65.0278.03
[31] Thron, W. J., L-polynomials orthogonal on the unit circle, (Cuyt, A., Nonlinear Methods and Rational Approximation (1988), Reidel Publishing Company: Reidel Publishing Company Dordrecht), 271-278 · Zbl 0663.42023
[32] Velázquez, L., Spectral methods for orthogonal rational functions, J. Funct. Anal., 254, 4, 954-986 (2008) · Zbl 1134.42330
[33] Watkins, D. S., Some perspectives on the eigenvalue problem, SIAM Rev., 35, 3, 430-471 (1993) · Zbl 0786.65032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.