×

Resolvent methods for quantum walks with an application to a Thue-Morse quantum walk. (English) Zbl 1470.81041

Summary: In this expository work, we discuss spatially inhomogeneous quantum walks in one dimension and describe a genre of mathematical methods that enables one to translate information about the time-independent eigenvalue equation for the unitary generator into dynamical estimates for the corresponding quantum walk. To illustrate the general methods, we show how to apply them to a 1D coined quantum walk whose coins are distributed according to an element of the Thue-Morse subshift.

MSC:

81S25 Quantum stochastic calculus
60G50 Sums of independent random variables; random walks
34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators

References:

[1] Ahlbrecht, A., Vogts, H., Werner, A., and Werner, R., “Asymptotic evolution of quantum walks with random coin,” J. Math. Phys., 52: 042201 (2011). · Zbl 1316.81066
[2] Baake, M., Damanik, D., and Grimm, U., “What is … aperiodic order?” Notices Amer. Math. Soc., 63: 647-650 (2016). · Zbl 1352.52028
[3] Baake, M., and Grimm, U., Aperiodic Order, Encyclopedia of Mathematics and Its Applications, 149, Cambridge University Press, Cambridge (2013). · Zbl 1295.37001
[4] Bourgain, J., Grünbaum, A., Velázquez, L., and Wilkening, J., “Quantum recurrence of a subspace and operator-valued Schur functions,” Commun. Math. Phys., 329: 1031-1067 (2014). · Zbl 1296.37014
[5] Cantero, M.-J., Grünbaum, A., Moral, L., and Velázquez, L., “Matrix-valued Szegő polynomials and quantum random walks,” Comm. Pure Appl. Math., 63: 464-507 (2010). · Zbl 1186.81036
[6] Cantero, M.-J., Grünbaum, A., Moral, L., and Velázquez, L., “The CGMV method for quantum walks,” Quantum Inf. Process., 11: 1149-1192 (2012). · Zbl 1252.82082
[7] Cedzich, C., and Werner, R. F., “Revivals in quantum walks with quasiperiodically-time-dependent coin,” Phys. Rev. A, 93: 032329 (2016).
[8] Damanik, D., Fillman, J., and Ong, D. C., “Spreading estimates for quantum walks on the integer lattice via power-law bounds on transfer matrices,” J. Math. Pures Appl., 105: 293-341 (2016). · Zbl 1332.81066
[9] Damanik, D., Fillman, J., and Vance, R., “Dynamics of unitary operators,” J. Fractal Geom., 1: 391-425 (2014). · Zbl 1321.47076
[10] Damanik, D., Munger, P., and Yessen, W., “Orthogonal polynomials on the unit circle with Fibonacci Verblunsky coefficients, II. Applications,” J. Stat. Phys., 153: 339-362 (2013). · Zbl 1291.33010
[11] Damanik, D., and Tcheremchantsev, S., “A general description of quantum dynamical spreading over an orthonormal basis and applications to Schrödinger operators,” Discrete Contin. Dyn. Syst., 28: 1381-1412 (2010). · Zbl 1198.81085
[12] Fillman, J., “Ballistic transport for limit-periodic Jacobi matrices with applications to quantum many-body problems,” Commun. Math. Phys., 350: 1275-1297 (2017). · Zbl 1359.81179
[13] Grünbaum, A., Velázquez, L., Werner, A., and Werner, R. F., “Recurrence for discrete time unitary evolutions,” Comm. Math. Phys., 320: 543-569 (2013). · Zbl 1276.81087
[14] Joye, A., “Random time-dependent quantum walks,” Commun. Math. Phys., 307: 65-100 (2011). · Zbl 1251.81059
[15] Joye, A., “Dynamical localization for d-dimensional random quantum walks,” Quantum Inf. Process., 11: 1251-1269 (2012). · Zbl 1252.82087
[16] Konno, N., “The uniform measure for discrete-time quantum walks in one dimension,” Quantum Inf. Process., 13: 1103-1125 (2014). · Zbl 1291.81205
[17] Konno, N., and Segawa, E., “Localization of discrete-time quantum walks on a half line via the CGMV method,” Quantum Inf. Comput., 11: 485-495 (2011). · Zbl 1238.81073
[18] Konno, N., and Segawa, E., “One-dimensional quantum walks via generating function and the CGMV method,” Quantum Inf. Comput., 14: 1165-1186 (2014).
[19] Liu, Q., Qu, Y., and Yao, X., “Unbounded trace orbits of Thue-Morse Hamiltonian” J. Stat. Phys., 166: 1509-1557 (2017). · Zbl 1376.82038
[20] Ribeiro, P., Milman, P., and Mosseri, R., “Aperiodic quantum random walks,” Phys. Rev. Lett., 93: 190503 (2004).
[21] Shikano, Y., and Katsura, H., “Localization and fractality in inhomogeneous quantum walks with self-duality,” Phys. Rev. E, 82 (2010).
[22] Simon, B., Orthogonal Polynomials on the Unit Circle. Part 2. Spectral Theory, Colloquium Publications, 54, American Mathematical Society, Providence (2005). · Zbl 1082.42021
[23] Sunada, T., and Tate, T., “Asymptotic behavior of quantum walks on the line,” J. Funct. Anal., 262: 2608-2645 (2012). · Zbl 1241.82042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.