×

On geodesic exponential maps of the Virasoro group. (English) Zbl 1121.35111

Summary: We study the geodesic exponential maps corresponding to Sobolev type right-invariant (weak) Riemannian metrics \(\mu^{(k)}\) \((k \geq\) 0) on the Virasoro group \(Vir\) and show that for \(k \geq 2\), but not for \(k = 0,1\), each of them defines a smooth Fréchet chart of the unital element \(e \in\) Vir. In particular, the geodesic exponential map corresponding to the Korteweg-de Vries (KdV) equation \((k = 0)\) is not a local diffeomorphism near the origin.

MSC:

35Q35 PDEs in connection with fluid mechanics
37K30 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with infinite-dimensional Lie algebras and other algebraic structures
37K25 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with topology, geometry and differential geometry
58B25 Group structures and generalizations on infinite-dimensional manifolds

References:

[1] Arnold V. (1966). Sur la geometrié differentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluids parfaits. Ann. Inst. Fourier 16(1):319–361
[2] Arnold V., Khesin B. (1998). Topological Methods in Hydrodynamics. Springer–Verlag, New York · Zbl 0902.76001
[3] Bona, J.-L., Smith, R.: The initial-value problem for Korteweg–de Vries equation. Phil. Trans. R. Soc. Lon. Ser. A, Math. Phys. Sci. 278, 555–601 (1975) · Zbl 0306.35027
[4] Burgers, J.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948)
[5] Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993) · Zbl 0972.35521
[6] Constantin, A.: On the Cauchy problem for the periodic Camassa–Holm equation. J. Differ. Eq. 141, 218–235 (1997) · Zbl 0889.35022
[7] Constantin, A., Escher, J.: Well-posedness, global existence, and blow-up phenomena for a periodic quasi-linear hyperbolic equation. Commun. Pure Appl. Math. 51, 475–504 (1998) · Zbl 0934.35153
[8] Constantin, A., Escher, J.: On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z. 233, 75–91 (2000) · Zbl 0954.35136
[9] Constantin, A., McKean, H.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982 (1999) · Zbl 0940.35177
[10] Constantin, A., Kolev, B.: On the geometric approach to the motion of inertial mechanical systems. J. Phys. A 35, R51–R79 (2002) · Zbl 1039.37068
[11] Constantin, A., Kolev, B.: Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78, 787–804 (2003) · Zbl 1037.37032
[12] Constantin, A., Kolev, B., Lenells, J.: Integrability of invariant metrics on the Virasoro group. Phys. Lett. A 350, 75–80 (2006) · Zbl 1195.58006
[13] De Lellis, C., Kappeler, T., Topalov, P.: Low regularity solutions of the Camassa–Holm equation (to appear in Comm. in PDE) · Zbl 1123.35045
[14] Ebin, D., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92, 102–163 (1970) · Zbl 0211.57401
[15] Fokas, A., Fuchssteiner, B.: Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica D 4, 47–66 (1981) · Zbl 1194.37114
[16] Hamilton, R.: The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. 7, 66–222 (1982) · Zbl 0499.58003
[17] Holm, D., Marsden, J., Ratiu, T.: The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998) · Zbl 0951.37020
[18] Kappeler, T., Pöschel, J.: KdV&KAM. Springer-Verlag, Berlin (2003)
[19] Kappeler, T., Topalov, P.: Well-posedness of KdV on H 1 ( \(\mathbb{T}\) ) (to appear in Duke Math. J.) · Zbl 1101.35367
[20] Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58, 181–205 (1975) · Zbl 0343.35056
[21] Khesin, B., Misiolek, G.: Euler equations on homogeneous spaces and Virasoro orbits. Adv. Math. 176, 116–144 (2003) · Zbl 1017.37039
[22] Kopell, N.: Commuting diffeomorphisms. (Proc. Symp. Pure Math). Am. Math. Soc. 14, 165–184 (1970) · Zbl 0225.57020
[23] Kouranbaeva, S.: The Camassa–Holm equation as a geodesic flow on the diffeomorphism group. J. Math. Phys. 40, 857–868 (1999) · Zbl 0958.37060
[24] Lang, S.: Differential manifolds. Addison-Wesley Series in Mathematics, Mass (1972) · Zbl 0239.58001
[25] Lenells, J.: The correspondence between KdV and Camassa–Holm. Int. Math. Res. Not. 71, 3797–3811 (2004) · Zbl 1082.35134
[26] McKean, H.P.: The Liouville correspondence between the Korteweg–de Vries and the Camassa–Holm hierarchies. Comm. Pure Appl. Math. 56, 998–1015 (2003) · Zbl 1037.37030
[27] Michor, P., Ratiu, T.: On the geometry of the Virasoro–Bott group. J. Lie Theory 8, 293–309 (1998) · Zbl 0945.58005
[28] Milnor, J.: Remarks on infinite-dimensional Lie groups. Les Houches, Session XL, 1983, Elsevier Science Publishers B.V. (1984) · Zbl 0557.10031
[29] Misiolek, G.: A shallow water equation as a geodesic flow on the Bott–Virasoro group. J. Geom. Phys. 24, 203–208 (1998) · Zbl 0901.58022
[30] Misiolek G. (2002). Classical solutions of the periodic Camassa–Holm equation. GAFA 12, 1080–1104 · Zbl 1158.37311 · doi:10.1007/PL00012648
[31] Ovsienko V., Khesin B. (1987). Korteweg–de Vries superequations as an Euler equation. Funct. Anal. Appl. 21, 81–82 · Zbl 0639.58019
[32] Quantum fields and strings: a course for mathematicians. vols. 1 and 2. Deligne, P., Etingof, P., etc., American Mathematical Society, Providence, RI; Institute for Advanced Study, Princeton, NJ (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.