×

Propositional logic, frames, and fuzzy algebra. (English) Zbl 0963.03089

The author offers a new look at such things as the fuzzy subalgebras and congruences of an algebra, the fuzzy ideals of a ring or a lattice, and similar entities, by exhibiting them as the models, in the chosen frame \(T\) of truth values, of naturally corresponding propositional theories. This provides a systematic approach to the study of the partially ordered sets formed by these various entities, and its usefulness is demonstrated by employing it to derive a number of results, old and new, concerning these partially ordered sets. For example, it is proved they are complete lattices, algebraic or continuous, depending on whether \(T\) is algebraic or continuous, respectively; they satisfy the same lattice identities for arbitrary \(T\) that hold in the case \(T=\{0,1\}\). It is also proved that the familiar classical situations where the congruences of an algebra correspond to certain other entities (i.e. normal subgroups, ideals of rings), extend to the fuzzy case by proving that the corresponding propositional theories are equivalent.

MSC:

03G25 Other algebras related to logic
03E72 Theory of fuzzy sets, etc.
06D22 Frames, locales
06A06 Partial orders, general
03C90 Nonclassical models (Boolean-valued, sheaf, etc.)
08A30 Subalgebras, congruence relations
08A72 Fuzzy algebraic structures
20N25 Fuzzy groups
Full Text: DOI

References:

[1] Banaschewski B., Can. J. Math. 32 pp 385– (1980) · Zbl 0434.06011 · doi:10.4153/CJM-1980-030-3
[2] Banaschewski B., J. Pure Appl. Algebra 70 pp 45– (1991) · Zbl 0744.06006 · doi:10.1016/0022-4049(91)90005-M
[3] Gierz G., A Compendium of Continuous Lattices (1980) · Zbl 0452.06001 · doi:10.1007/978-3-642-67678-9
[4] Goguen J. A., J. Math. Anal. Appl. 18 pp 145– (1967) · Zbl 0145.24404 · doi:10.1016/0022-247X(67)90189-8
[5] Gupta K. C., Fuzzy Sets and Systems 59 pp 87– (1993) · Zbl 0790.13007 · doi:10.1016/0165-0114(93)90228-A
[6] Hofmann K. H., Trans. Amer. Math. Soc. 246 pp 285– (1978) · doi:10.1090/S0002-9947-1978-0515540-7
[7] Johnstone P. T., Stone Spaces (1982)
[8] Malik D. S., Fuzzy Sets and Systems 37 pp 93– (1990) · Zbl 0704.16002 · doi:10.1016/0165-0114(90)90066-F
[9] Malik D. S., Info. Sci. 53 pp 237– (1991) · Zbl 0712.16001 · doi:10.1016/0020-0255(91)90038-V
[10] Makamba B. B., Info. Sci. 59 pp 121– (1992) · Zbl 0737.20041 · doi:10.1016/0020-0255(92)90046-B
[11] Murali V., Ix, Fuzzy Sets and Systems 41 pp 101– (1991) · Zbl 0731.08007 · doi:10.1016/0165-0114(91)90160-R
[12] Murali V., Fuzzy Sets and Systems 41 pp 359– (1991) · Zbl 0737.08001 · doi:10.1016/0165-0114(91)90138-G
[13] Vickers S., Cambridge Tracts in Theoretical Computer Science 5 (1989)
[14] Zadeh L. A., Inform, and Control 8 pp 338– (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.