×

Tight frames, Hadamard matrices and Zauner’s conjecture. (English) Zbl 1509.81010

Summary: We show that naturally associated to a SIC (symmetric informationally complete positive operator valued measure or SIC-POVM) in dimension \(d\) there are a number of higher dimensional structures: specifically a projector and complex Hadamard matrix in dimension \(d^2\), and a pair of ETFs (equiangular tight frames) in dimensions \(d(d\pm1)/2\). We also show that a WH (Weyl-Heisenberg covariant) SIC in odd dimension \(d\) is naturally associated to a pair of symmetric tight fusion frames in dimension \(d\). We deduce two relaxations of the WH SIC existence problem. We also find a reformulation of the problem in which the number of equations is fewer than the number of variables. Finally, we show that in at least four cases the structures associated to a SIC lie on continuous manifolds of such structures. In two of these cases the manifolds are non-linear. Restricted defect calculations are consistent with this being true for the structures associated to every known SIC with \(d\) between 3 and 16, suggesting it may be true for all \(d\geqslant3\).

MSC:

81P15 Quantum measurement theory, state operations, state preparations
81P16 Quantum state spaces, operational and probabilistic concepts
15B34 Boolean and Hadamard matrices

References:

[1] Zauner G 1999 Quantendesigns. Grundzüge einer nichtkommutativen designtheorie PhD Thesis University of Wien
[2] Zauner G 2004 Quantendesigns. Grundzüge einer nichtkommutativen designtheorie Int. J. Quantum Inf.9 445 (English trans.) · Zbl 1214.81062 · doi:10.1142/S0219749911006776
[3] Renes J M, Blume-Kohout R, Scott A J and Caves C M 2004 Symmetric informationally complete quantum measurements J. Math. Phys.45 2171 · Zbl 1071.81015 · doi:10.1063/1.1737053
[4] Fuchs C A, Hoan M C and Stacey B C 2017 The SIC question: history and state of play Axioms6 21 · doi:10.3390/axioms6030021
[5] Hoggar S G 1998 64 lines from a quaternionic polytope Geom. Dedicata69 287-9 · Zbl 0897.52001 · doi:10.1023/A:1005009727232
[6] Scott A J and Grassl M 2010 SIC-POVMs: a new computer study J. Math. Phys.51 042203 · Zbl 1310.81022 · doi:10.1063/1.3374022
[7] Scott A J 2017 SICs: extending the list of solutions (arXiv:1703.03993)
[8] Grassl M and Scott A J 2017 Fibonacci-Lucas SIC-POVMs J. Math. Phys.58 122201 · Zbl 1377.81014 · doi:10.1063/1.4995444
[9] Grassl M and Scott A J 2019 private communication
[10] Grassl M 2004 On SIC-POVMs and MUBs in dimension 6 (arXiv:quant-ph/0406175)
[11] Appleby D M 2005 SIC-POVMs and the extended Clifford group J. Math. Phys.46 052107 · Zbl 1110.81023 · doi:10.1063/1.1896384
[12] Appleby M, Chien T-Y, Flammia S and Waldron S 2018 Constructing exact symmetric informationally complete measurements from numerical solutions J. Phys. A: Math. Theor.51 165302 · Zbl 1397.81022 · doi:10.1088/1751-8121/aab4cd
[13] Kopp G S 2018 SIC POVMs and the Stark conjectures (arXiv:1807.05877) · Zbl 1489.11191
[14] Appleby D M, Yadsan-Appleby H and Zauner G 2013 Galois automorphisms of symmetric measurements Quantum Inf. Comput.13 672
[15] Appleby M, Flammia S, McConnell G and Yard J 2016 Generating ray class fields of real quadratic fields via complex equiangular lines (arXiv:1604.06098)
[16] Appleby M, Flammia S, McConnell G and Yard J 2017 SICs and algebraic number theory Found. Phys.47 1042-59 · Zbl 1382.81023 · doi:10.1007/s10701-017-0090-7
[17] Kopp G S 2017 Indefinite theta functions, zeta functions PhD Thesis University of Michigan Press, Ann Arbor, MI
[18] Appleby M, Bengtsson I, Dumitru I and Flammia S 2017 Dimension Towers of SICs. I. Aligned SICs and embedded tight frames J. Math. Phys.58 112201 · Zbl 1377.81013 · doi:10.1063/1.4999844
[19] Datta S, Howard S and Cochran D 2012 Geometry of the Welch Bounds Linear Algebr. Appl.437 2455 · Zbl 1381.42040 · doi:10.1016/j.laa.2012.05.036
[20] Waldron S 2017 A sharpening of the Welch bounds and the existence of real and complex spherical t-designs IEEE Trans. Inf. Theory63 6489 · Zbl 1390.94912 · doi:10.1109/TIT.2017.2696020
[21] Casazza P G, Fickus M, Mixon D G, Wang Y and Zhou Z 2011 Constructing tight fusion frames Appl. Comput. Harmon. Anal.30 175 · Zbl 1221.42052 · doi:10.1016/j.acha.2010.05.002
[22] Casazza P G and Kutyniok G 2004 Frames of subspaces Contemp. Math.345 87 · Zbl 1058.42019 · doi:10.1090/conm/345/06242
[23] Bruzda W, Goyeneche D and Zyczkowski K 2017 Quantum measurements with prescribed symmetry Phys. Rev. A 96 022105 · doi:10.1103/PhysRevA.96.022105
[24] Welch L R 1974 Lower bounds on the maximum cross correlation of signals IEEE Trans. Inf. Theory20 397 · Zbl 0298.94006 · doi:10.1109/TIT.1974.1055219
[25] Klappenecker A and Rötteler M 2005 Mutually unbiased bases are projective 2-designs Proc. IEEE Int. Symp. on Information Theory(Adelaide,) pp 1740-44 · doi:10.1109/ISIT.2005.1523643
[26] Neumark M A 1943 On a representation of additive operator set functions C. R. Dokl. Acad. Sci. URSS41 359-61 · Zbl 0061.25410
[27] Han D and Larson D R 2000 Frames, bases and group representations Mem. Am. Math. Soc.147 1-94 · Zbl 0971.42023 · doi:10.1090/memo/0697
[28] Schwinger J 1960 Unitary operator bases Proc. Natl Acad. Sci. USA46 570 · Zbl 0090.19006 · doi:10.1073/pnas.46.4.570
[29] Appleby D M, Flammia S T and Fuchs C A 2011 The Lie algebraic significance of symmetric informationally complete measurements J. Math. Phys.52 022202 · Zbl 1314.81026 · doi:10.1063/1.3555805
[30] Fickus M, Jasper J, Mixon D G and Watson C E 2017 A brief introduction to equi-chordal and equi-isoclinic tight fusion frames Proc. SPIE10394 103940T · doi:10.1117/12.2270953
[31] King E J 2019 Creating subspace packings from other subspace packings (arXiv:1902.07145)
[32] Kutyniok G, Pezeshki A, Calderbank R and Liu T 2009 Robust dimension reduction, fusion frames, and grassmannian packings Appl. Comput. Harmon. Anal.26 64-76 · Zbl 1283.42046 · doi:10.1016/j.acha.2008.03.001
[33] Graydon M A and Appleby D M 2016 Quantum conical designs J. Phys. A: Math. Theor.49 085301 · Zbl 1342.81069 · doi:10.1088/1751-8113/49/8/085301
[34] Belovs A 2008 Welch bounds and quantum state tomography MSc Thesis University of Waterloo
[35] Tadej W and Życzkowski K 2006 A concise guide to complex Hadamard matrices Open Syst. Inf. Dyn.13 133 · Zbl 1105.15020 · doi:10.1007/s11080-006-8220-2
[36] Szöllősi F 2011 Construction, classification and parametrization of complex Hadamard matrices PhD Thesis Central European University
[37] Karlsson B R 2016 BCCB complex Hadamard matrices of order 9 and MUBs Linear Algebr. Appl.504 309 · Zbl 1381.05005 · doi:10.1016/j.laa.2016.04.012
[38] Holmes R B and Paulsen V I 2004 Optimal frames for erasures Linear Algebr. Appl.377 31 · Zbl 1042.46009 · doi:10.1016/j.laa.2003.07.012
[39] Szöllősi F 2013 Complex Hadamard matrices and equiangular tight frames Linear Algebra Appl.438 1962 · Zbl 1266.42079 · doi:10.1016/j.laa.2011.05.034
[40] Goyeneche D and Turek O 2017 Equiangular tight frames and unistochastic matrices J. Phys. A: Math. Theor.50 245304 · Zbl 1369.81020 · doi:10.1088/1751-8121/aa6e16
[41] Bodmann B G and Elwood H J 2010 Complex equiangular parsival frames and seidel matrices containing pth roots of unity Proc. Am. Math. Soc.138 4387-404 · Zbl 1209.42020 · doi:10.1090/S0002-9939-2010-10435-5
[42] Fickus M, Mixon D G and Tremain J C 2012 Steiner equiangular tight frames Linear Algebr. Appl.436 1014 · Zbl 1252.42032 · doi:10.1016/j.laa.2011.06.027
[43] Appleby D M 2007 Symmetric informationally complete measurements of arbitrary rank Opt. Spect.103 416-28 · doi:10.1134/S0030400X07090111
[44] Sustik M A, Tropp J A, Dhillon I S and Heath R W Jr 2007 On the existence of equiangular tight frames Linear Algebra Appl.426 619-35 · Zbl 1127.15013 · doi:10.1016/j.laa.2007.05.043
[45] Fickus M, Mixon D G and Tremain J C 2011 Constructing a large family of equiangular tight frames Proc. SampTA, Theory Applications(Singapore,)
[46] Fickus M, Jasper J, Mixon D G and Peterson J 2018 Tremain equiangular tight frames J. Comb. Theory A 153 54-66 · Zbl 1369.05217 · doi:10.1016/j.jcta.2017.08.005
[47] Bodmann B G and King E J 2018 Optimal arrangements of classical and quantum states with limited purity (arXiv:1811.11513)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.