×

Varieties generated by completions. (English) Zbl 1468.03080

Summary: We prove that persistently finite algebras are not created by completions of algebras, in any ordered discriminator variety. A persistently finite algebra is one without infinite simple extensions. We prove that finite measurable relation algebras are all persistently finite. An application of these theorems is that the variety generated by the completions of representable relation algebras does not contain all relation algebras. This answers Problem 1.1(1) from R. D. Maddux’s 2018 Algebra Universalis paper [Algebra Univers. 79, No. 2, Paper No. 20, 32 p. (2018; Zbl 1444.03177)] in the negative. At the same time, we confirm the suggestion in that paper that the finite maximal relation algebras constructed in M. F. Frias and R. D. Maddux’s 1997 Algebra Universalis paper [Algebra Univers. 38, No. 2, 115–135 (1997; Zbl 0903.03039)] are not in the variety generated by the completions of representable relation algebras. We prove that there are continuum many varieties between the variety generated by the completions of representable relation algebras and the variety of relation algebras.

MSC:

03G15 Cylindric and polyadic algebras; relation algebras
03C05 Equational classes, universal algebra in model theory
06E25 Boolean algebras with additional operations (diagonalizable algebras, etc.)
03C13 Model theory of finite structures
06A06 Partial orders, general
06B23 Complete lattices, completions
06A11 Algebraic aspects of posets

References:

[1] Andréka, H., Givant, S.: Coset relation algebras. Algebra Univ. 79, 28 (2018) · Zbl 1522.03337 · doi:10.1007/s00012-018-0516-x
[2] Andréka, H., Givant, S., Németi, I.: Nonrepresentable relation algebras from groups. Rev. Symbolic Logic (2019). https://doi.org/10.1017/S1755020319000224 · Zbl 1477.03262
[3] Andréka, H., Jónsson, B., Németi, I.: Free algebras in discriminator varieties. Algebra Univ. 28, 401-447 (1991) · Zbl 0745.03050 · doi:10.1007/BF01191089
[4] Andréka, H., Maddux, R.D., Németi, I.: Splitting in relation algebras. Proc. Am. Math. Soc. 111(4), 1085-1093 (1991) · Zbl 0721.03046 · doi:10.2307/2048576
[5] Frias, M., Maddux, R.D.: Non-embeddable simple relation algebras. Algebra Univ. 38(2), 115-135 (1997) · Zbl 0903.03039 · doi:10.1007/s000120050041
[6] Givant, S.: Relation algebras and groups. Algebra Univ. 79, 16 (2018) · Zbl 1522.03340 · doi:10.1007/s00012-018-0505-0
[7] Givant, S.: Introduction to Relation Algebras. Springer, Cham (2017) · Zbl 1426.03001 · doi:10.1007/978-3-319-65235-1
[8] Givant, S.: Advanced Topics in Relation Algebras. Springer, Cham (2017) · Zbl 1437.03001 · doi:10.1007/978-3-319-67696-8
[9] Givant, S., Andréka, H.: Groups and algebras of relations. Bull. Symb. Logic 8, 38-64 (2002) · Zbl 1002.03055 · doi:10.2178/bsl/1182353852
[10] Givant, S., Andréka, H.: A representation theorem for measurable relation algebras. J. Pure Appl. Logic 169(11), 1117-1189 (2018) · Zbl 1453.03071 · doi:10.1016/j.apal.2018.06.002
[11] Givant, S., Andréka, H.: The variety of coset relation algebras. J. Symb. Logic 83(4), 1595-1609 (2018) · Zbl 1477.03263 · doi:10.1017/jsl.2018.48
[12] Hodkinson, I.: Atom structures of cylindric algebras and relation algebras. Ann. Pure Appl. Logic 89, 117-148 (1997) · Zbl 0898.03025 · doi:10.1016/S0168-0072(97)00015-8
[13] Hirsch, R., Hodkinson, I.: Relation Algebras by Games. North-Holland, Amsterdam (2002) · Zbl 1018.03002
[14] Jipsen, P.; Rauszer, C. (ed.), Discriminator varieties of Boolean algebras with residuated operations, No. 28, 239-252 (1993), Warsaw · Zbl 0794.06012
[15] Jónsson, B.: Varieties of relation algebras. Algebra Univ. 15, 273-298 (1982) · Zbl 0545.08009 · doi:10.1007/BF02483728
[16] Jónsson, B., Tarski, A.: Boolean algebras with operators. Part II. Am. J. Math. 74, 127-162 (1952) · Zbl 0045.31601 · doi:10.2307/2372074
[17] Khaled, M.: The free non-commutative cylindric algebras are not atomic. Logic J. IGPL 25(5), 673-685 (2017) · Zbl 1492.03023 · doi:10.1093/jigpal/jzw058
[18] Khaled, M.: The finitely axiomatizable complete theories of non-associative arrow frames. Adv. Math. 346(13), 194-218 (2019) · Zbl 1457.03043 · doi:10.1016/j.aim.2019.01.014
[19] Maddux, R.D.: A perspective on relation algebras. Algebra Univ. 31, 456-465 (1994) · Zbl 0803.03043 · doi:10.1007/BF01221799
[20] Maddux, R.D.: Relation Algebras. North-Holland, Amsterdam (2006) · Zbl 1197.03051
[21] Maddux, R.D.: Subcompletions of representable relation algebras. Algebra Univ. 79, 20 (2018) · Zbl 1444.03177 · doi:10.1007/s00012-018-0493-0
[22] Monk, J.D.: Completions of Boolean algebras with operators. Math. Nachr. 46, 47-55 (1970) · Zbl 0182.32301 · doi:10.1002/mana.19700460105
[23] Nation, J.B., Pogel, A.: The lattice of completions of an ordered set. Order 14(1), 1-7 (1997) · Zbl 0888.06003 · doi:10.1023/A:1005805026315
[24] Werner, H.: Discriminator Algebras. Academie, Berlin (1978) · Zbl 0374.08002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.