×

Geometry and analysis of Dirichlet forms. II. (English) Zbl 1297.53033

Summary: Given a regular, strongly local Dirichlet form \(\mathcal{E}\), under assumption that the lower bound of the Ricci curvature of Bakry-Emery, the local doubling and local Poincaré inequalities are satisfied, we obtain that: (i) the intrinsic differential and distance structures of \(\mathcal{E}\) coincide (ii) the Cheeger energy functional \(\operatorname{Ch}_{d_{\mathcal{E}}}\) is a quadratic norm. This shows that (ii) is necessary for the Riemannian Ricci curvature defined by Ambrosio-Gigli-Savaré to be bounded from below. This together with some recent results of Ambrosio-Gigli-Savaré yields that the heat flow gives a gradient flow of Boltzman-Shannon entropy under the above assumptions. We also obtain an improvement on Kuwada’s duality theorem for Dirichlet forms under the assumptions of doubling and Poincaré inequalities. Finally, Dirichlet forms are constructed to show that doubling and Poincaré inequalities are not enough to obtain either (i) or (ii) above; that is, the lower bound of the Bakry-Emery curvature condition is essential.
For Part I see [P. Koskela and Y. Zhou, Adv. Math. 231, No. 5, 2755–2801 (2012; Zbl 1253.53035)].

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
35K05 Heat equation

Citations:

Zbl 1253.53035
Full Text: DOI

References:

[1] Ambrosio, L.; Gigli, N.; Savaré, G., Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures Math. ETH Zurich (2008), Birkhäuser Verlag: Birkhäuser Verlag Basel, 334 pp · Zbl 1145.35001
[2] Ambrosio, L.; Gigli, N.; Savaré, G., Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 195, 289-391 (2014) · Zbl 1312.53056
[3] Ambrosio, L.; Gigli, N.; Savaré, G., Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163, 1405-1490 (2014) · Zbl 1304.35310
[4] Ambrosio, L.; Gigli, N.; Savaré, G., Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces, Rev. Mat. Iberoam., 29, 971-998 (2013)
[6] Bakry, D., On Sobolev and logarithmic inequalities for Markov semigroups, (New Trends in Stochastic Analysis. New Trends in Stochastic Analysis, Charingworth, 1994 (1997), World Scientific Publishing: World Scientific Publishing River Edge, NJ), 43-75
[7] Bakry, D.; Emery, M., Diffusions hypercontractives, Séminaire de probabilités de Strasbourg, XIX, 177-206 (1983/1984) · Zbl 0561.60080
[8] Balogh, Z. M.; Engoulatov, A.; Hunziker, L.; Maasalo, O. E., Functional inequalities and Hamilton-Jacobi equations in geodesic spaces, Potential Anal., 36, 317-337 (2012) · Zbl 1330.70076
[9] Beurling, A.; Deny, J., Dirichlet spaces, Proc. Natl. Acad. Sci. USA, 45, 208-215 (1959) · Zbl 0089.08201
[10] Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9, 428-517 (1999) · Zbl 0942.58018
[11] Cheeger, J.; Colding, T. H., On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., 46, 406-480 (1997) · Zbl 0902.53034
[12] Driver, B. K.; Melcher, T., Hypoelliptic heat kernel inequalities on the Heisenberg group, J. Funct. Anal., 221, 340-365 (2005) · Zbl 1071.22005
[13] Dudley, R. M., Real Analysis and Probability, Cambridge Stud. Adv. Math., vol. 74 (2002) · Zbl 1023.60001
[14] Franchi, B.; Pérez, C.; Wheeden, R. L., Self-improving properties of John-Nirenberg and Poincaré inequalities on spaces of homogeneous type, J. Funct. Anal., 153, 108-146 (1998) · Zbl 0892.43005
[15] Fukushima, M., Dirichlet Forms and Markov Processes, North-Holland Math. Library, vol. 23 (1980), North-Holland Publishing Co./Kodansha, Ltd.: North-Holland Publishing Co./Kodansha, Ltd. Amsterdam-New York/Tokyo, x+196 pp · Zbl 0422.31007
[16] Fukushima, M.; Ōshima, Y.; Takeda, M., Dirichlet Forms and Symmetric Markov Processes, de Gruyter Stud. Math., vol. 19 (1994), Walter de Gruyter & Co.: Walter de Gruyter & Co. Berlin, 392 pp · Zbl 0838.31001
[17] Gigli, N.; Kuwada, K.; Ohta, S.-I., Heat flow on Alexandrov spaces, Comm. Pure Appl. Math., 66, 307-331 (2013) · Zbl 1267.58014
[18] Hebisch, W.; Saloff-Coste, L., On the relation between elliptic and parabolic Harnack inequalities, Ann. Inst. Fourier (Grenoble), 51, 1437-1481 (2001) · Zbl 0988.58007
[19] Heinonen, J.; Koskela, P., Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181, 1-61 (1998) · Zbl 0915.30018
[20] Keith, S., A differentiable structure for metric measure spaces, Adv. Math., 183, 271-315 (2004) · Zbl 1077.46027
[21] Koskela, P.; Rajala, K.; Shanmugalingam, N., Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces, J. Funct. Anal., 202, 147-173 (2003) · Zbl 1027.31006
[22] Koskela, P.; Shanmugalingam, N.; Zhou, Y., \(L^\infty \)-variational problem associated to Dirichlet forms, Math. Res. Lett., 19, 1263-1275 (2012) · Zbl 1280.49028
[23] Koskela, P.; Shanmugalingam, N.; Zhou, Y., Intrinsic geometry and analysis of Diffusion process and \(L^\infty \)-variational problem, Arch. Ration. Mech. Anal., 214, 99-142 (2014) · Zbl 1302.60113
[24] Koskela, P.; Zhou, Y., Geometry and analysis of Dirichlet forms, Adv. Math., 231, 2755-2801 (2012) · Zbl 1253.53035
[25] Kuwada, K., Duality on gradient estimates and Wasserstein controls, J. Funct. Anal., 258, 3758-3774 (2010) · Zbl 1194.53032
[26] Li, H.-Q., Optimal estimation of the gradient of the heat semigroup on the Heisenberg group, J. Funct. Anal., 236, 369-394 (2006) · Zbl 1106.22009
[27] Lott, J.; Villani, C., Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169, 903-991 (2009) · Zbl 1178.53038
[28] Norris, J. R., Heat kernel asymptotics and the distance function in Lipschitz Riemannian manifolds, Acta Math., 179, 79-103 (1997) · Zbl 0912.58041
[29] Ohta, S.-I., Gradient flows on Wasserstein spaces over compact Alexandrov spaces, Amer. J. Math., 131, 475-516 (2009) · Zbl 1169.53053
[30] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., vol. 44 (1983), Springer-Verlag: Springer-Verlag New York, viii+279 pp · Zbl 0516.47023
[31] von Renesse, M.-K.; Sturm, K.-T., Transport inequalities, gradient estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math., 58, 923-940 (2005) · Zbl 1078.53028
[32] Saloff-Coste, L., A note on Poincaré Sobolev, and Harnack inequalities, Int. Math. Res. Not. IMRN, 2, 27-38 (1992) · Zbl 0769.58054
[33] Savaré, G., Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in \(RCD(K, \infty)\) metric measure spaces · Zbl 1275.49087
[34] Shanmugalingam, N., Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoam., 16, 243-279 (2000) · Zbl 0974.46038
[35] Stollmann, P., A dual characterization of length spaces with application to Dirichlet metric spaces, Studia Math., 198, 221-233 (2010) · Zbl 1198.31005
[36] Sturm, K.-T., Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and \(L^p\)-Liouville properties, J. Reine Angew. Math., 456, 173-196 (1994) · Zbl 0806.53041
[37] Sturm, K.-T., Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math., 32, 275-312 (1995) · Zbl 0854.35015
[38] Sturm, K. T., Is a diffusion process determined by its intrinsic metric?, Chaos Solitons Fractals, 8, 1855-1860 (1997) · Zbl 0939.58032
[39] Sturm, K. T., The geometric aspect of Dirichlet forms, (New Directions in Dirichlet Forms. New Directions in Dirichlet Forms, AMS/IP Stud. Adv. Math., vol. 8 (1998), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 233-277 · Zbl 0922.60074
[40] Sturm, K.-T., On the geometry of metric measure spaces. I, Acta Math., 196, 65-131 (2006) · Zbl 1105.53035
[41] Sturm, K.-T., On the geometry of metric measure spaces. II, Acta Math., 196, 133-177 (2006) · Zbl 1106.53032
[42] Villani, C., Optimal Transport. Old and New, Grundlehren Math. Wiss., vol. 338 (2009), Springer-Verlag: Springer-Verlag Berlin, 973 pp · Zbl 1156.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.