×

Positive blending Hermite rational cubic spline fractal interpolation surfaces. (English) Zbl 1310.28005

Summary: Fractal interpolation provides an efficient way to describe data that have smooth and non-smooth structures. Based on the theory of fractal interpolation functions (FIFs), the Hermite rational cubic spline FIFs (fractal boundary curves) are constructed to approximate an original function along the grid lines of interpolation domain. Then the blending Hermite rational cubic spline fractal interpolation surface (FIS) is generated by using the blending functions with these fractal boundary curves. The convergence of the Hermite rational cubic spline FIS towards an original function is studied. The scaling factors and shape parameters involved in fractal boundary curves are constrained suitably such that these fractal boundary curves are positive whenever the given interpolation data along the grid lines are positive. Our Hermite blending rational cubic spline FIS is positive whenever the corresponding fractal boundary curves are positive. Various collections of fractal boundary curves can be adapted with suitable modifications in the associated scaling parameters or/and shape parameters, and consequently our construction allows interactive alteration in the shape of rational FIS.

MSC:

28A80 Fractals
65D05 Numerical interpolation
14Q10 Computational aspects of algebraic surfaces
34D45 Attractors of solutions to ordinary differential equations
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics
Full Text: DOI

References:

[1] Barnsley, M.F.: Fractal functions and interpolation. Constr. Approx. 2, 303-329 (1986) · Zbl 0606.41005 · doi:10.1007/BF01893434
[2] Barnsley, M.F., Harrington, A.N.: The calculus of fractal interpolation functions. J. Approx. Theory. 57(1), 14-34 (1989) · Zbl 0693.41008 · doi:10.1016/0021-9045(89)90080-4
[3] Bouboulis, P., Dalla L., Drakopoulos, V.: Image compression using recurrent bivariate fractal interpolation surfaces. J. Bifur. Chaos. 16(7), 2063-2071 (2006) · Zbl 1153.94304
[4] Bouboulis, P., Dalla, L.: Closed fractal interpolation surfaces. J. Math. Anal. Appl. 327, 116-126 (2007) · Zbl 1110.28004 · doi:10.1016/j.jmaa.2006.04.009
[5] Bouboulis, P., Dalla, L.: Fractal interpolation surfaces derived from fractal interpolation functions. J. Math. Anal. Appl. 336, 919G936 (2007) · Zbl 1151.28008 · doi:10.1016/j.jmaa.2007.01.112
[6] Brodlie, K., Mashwama, P., Butt, S.: Visualization of surface data to preserve positivity and other simple constraints. Comput. Graph. 19(4), 585-594 (1995) · doi:10.1016/0097-8493(95)00036-C
[7] Cambell, B.A., Shepard, M.K.: Shadows on a planetary surface and implications for photometric roughness. ICARUS. 134, 279-291 (1998) · doi:10.1006/icar.1998.5958
[8] Casciola, G., Romani, L. : Rational interpolants with tension parameters. In: Cohen A., Merrien J.L., Schumaker L.L. (eds.) Curve and surface design, pp. 41-50. Brentwood (TN), Nashboro (2003) · Zbl 1048.65016
[9] Chand, A.K.B., Kapoor, G.P.: Hidden variable bivariate fractal interpolation surfaces. Fractals. 11(3), 277-288 (2003) · Zbl 1046.28004 · doi:10.1142/S0218348X03002129
[10] Chand, A.K.B., Kapoor, G.P.: Generalized cubic spline fractal interpolation functions. SIAM J. Numer. Anal. 44(2), 655-676 (2006) · Zbl 1136.41006 · doi:10.1137/040611070
[11] Chand, A.K.B.: Natural cubic spline coalescence hidden variable fractal interpolation surfaces. Fractals. 20(2), 117-131 (2012) · Zbl 1250.28004 · doi:10.1142/S0218348X12500119
[12] Chand, A.K.B., Navascués, M.A.: Natural bicubic spline fractal interpolation. J. Nonlinear Anal. 69, 3679-3691 (2008) · Zbl 1168.65009 · doi:10.1016/j.na.2007.10.011
[13] Chand, A.K.B., Navascués, M.A.: Generalized Hermite fractal interpolation. Rev. Real Acad. Cienc. Zaragoza. 64, 107-120 (2009) · Zbl 1207.28002
[14] Chand, A.K.B., Vijender N.: Monotonicity preserving rational quadratic fractal interpolation functions. Adv. Num. Anal. 2014, Art ID 504825, 1-17 (2014) · Zbl 1292.65005
[15] Chand, A. K. B., Vijender, N., Navascués, M. A.: Shape preservation of scientific data through rational fractal splines, Calcolo. doi:10.1007/s10092-013-0088-2 · Zbl 1315.65014
[16] Chand, A.K.B., Viswanathan, P.: Cubic Hermite and cubic spline fractal interpolation functions. AIP Conf. Proc. 1479, 1467-1470 (2012) · doi:10.1063/1.4756439
[17] Chand, A.K.B., Viswanathan, P.: A constructive approach to cubic Hermite fractal interpolation function and its constrained aspects. BIT Numer. Math. 53(4), 841-865 (2013) · Zbl 1283.65010 · doi:10.1007/s10543-013-0442-4
[18] Dalla, L.: Bivariate fractal interpolation functions on grids. Fractals. 10(1), 53-58 (2002) · Zbl 1088.28502 · doi:10.1142/S0218348X02000951
[19] Duan, Q., Djidjeli, K., Price, W.G., Twizell, E.H.: The approximation properties of some rational cubic splines. J. Comput. Math. 72, 155-166 (1999) · Zbl 0933.41007
[20] Feng, Z., Feng, Y., Yuan, Z.: Fractal interpolation surfaces with function vertical scaling factors. Appl. Math. Lett. 25(11), 1896-1900 (2012) · Zbl 1253.65022
[21] Geronimo, J.S., Hardin, D.P.: Fractal interpolation functions from \[\mathbb{R}^n \rightarrow \mathbb{R}^mRn\]→Rm and their projections. Z. Anal. Anwend. 12, 535-548 (1993) · Zbl 0777.41022
[22] Kapoor, G.P., Prasad, S.A.: Smoothness of coalescence hidden-variable fractal interpolation surfaces. Int. J. Bifur. Chaos Appl. Sci. Eng. 19(7), 2321-2333 (2009) · Zbl 1176.28004 · doi:10.1142/S0218127409024098
[23] Mulansky, B., Schmidt, J.W.: Nonnegative interpolation by biquadratic splines on refined rectangular grids, In: Laurent, P.J., Le Mehaute, A., Schumaker, L.L. (eds.) Wavelets, images, and surface fitting, pp. 379-386. A K Peters, Wellesley (1994) · Zbl 0815.65006
[24] Malysz, R.: The Minkowski dimension of the bivariate fractal interpolation surfaces. Chaos Solitons Fractals. 27(5), 1147-1156 (2006) · Zbl 1085.28005 · doi:10.1016/j.chaos.2005.05.007
[25] Navascués, M.A.: Fractal polynomial interpolation. Z. Anal. Anwend 25(2), 401-418 (2005) · Zbl 1082.28006 · doi:10.4171/ZAA/1248
[26] Navascués, M.A., Sebastián, M.V.: Smooth fractal interpolation, J. Inequal Appl. 2006, Art ID 78734, 1-20 (2006) · Zbl 1133.41307
[27] Sarfraz, M., Hussain, M.Z.: Data visualization using rational spline interpolation. J. Comp. Appl. Math. 189, 513-525 (2006) · Zbl 1086.65010 · doi:10.1016/j.cam.2005.04.039
[28] Schmidt, J.W., Heß, W.: Positivity of cubic polynomial on intervals and positive spline interpolation. BIT. 28, 340-352 (1988) · Zbl 0642.41007 · doi:10.1007/BF01934097
[29] Xie, H., Sun, H.: The study of bivariate fractal interpolation functions and creation of fractal interpolated surfaces. Fractals. 5(4), 625-634 (1997) · Zbl 0908.65005 · doi:10.1142/S0218348X97000504
[30] Zhao, N.: Construction and application of fractal interpolation surfaces. Vis. Comput. 12, 132-146 (1996) · doi:10.1007/BF01725101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.