×

Bayesian model calibration for diblock copolymer thin film self-assembly using power spectrum of microscopy data and machine learning surrogate. (English) Zbl 1536.62040

Summary: Identifying parameters of computational models from experimental data, or model calibration, is fundamental for assessing and improving the predictability and reliability of computer simulations. In this work, we propose a method for Bayesian calibration of models that predict morphological patterns of diblock copolymer (Di-BCP) thin film self-assembly while accounting for various sources of uncertainties in pattern formation and data acquisition. This method extracts the azimuthally-averaged power spectrum (AAPS) of the top-down microscopy characterization of Di-BCP thin film patterns as summary statistics for Bayesian inference of model parameters via the pseudo-marginal method. We derive the analytical and approximate form of a conditional likelihood for the AAPS of image data. We demonstrate that AAPS-based image data reduction retains the mutual information, particularly on important length scales, between image data and model parameters while being relatively agnostic to the aleatoric uncertainties associated with the random long-range disorder of Di-BCP patterns. Additionally, we propose a phase-informed prior distribution for Bayesian model calibration. Furthermore, reducing image data to AAPS enables us to efficiently build surrogate models to accelerate the proposed Bayesian model calibration procedure. We present the formulation and training of two multi-layer perceptrons for approximating the parameter-to-spectrum map, which enables fast integrated likelihood evaluations. We validate the proposed Bayesian model calibration method through numerical examples, for which the neural network surrogate delivers a fivefold reduction of the number of model simulations performed for a single calibration task.

MSC:

62F15 Bayesian inference
65C05 Monte Carlo methods
68T05 Learning and adaptive systems in artificial intelligence

References:

[1] Hamley, I. W.
[2] Bates, F. S.; Fredrickson, G. H., Block copolymers—Designer soft materials. Phys. Today, 2, 32-38 (1999)
[3] Khandpur, A. K.; Förster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K.; Mortensen, K., Polyisoprene-Polystyrene diblock copolymer phase diagram near the order-disorder transition. Macromolecules, 26, 8796-8806 (1995)
[4] Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; De Pablo, J. J.; Nealey, P. F., Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature, 6947, 411-414 (2003)
[5] Berry, B. C.; Bosse, A. W.; Douglas, J. F.; Jones, R. L.; Karim, A., Orientational order in block copolymer films zone annealed below the order-disorder transition temperature. Nano Lett., 9, 2789-2794 (2007)
[6] Mansky, P.; Harrison, C. K.; Chaikin, P. M.; Register, R. A.; Yao, N., Nanolithographic templates from diblock copolymer thin films. Appl. Phys. Lett., February 1996, 2586 (1995)
[7] Park, C.; Yoon, J.; Thomas, E. L., Enabling nanotechnology with self assembled block copolymer patterns. Polymer, 22, 6725-6760 (2003)
[8] Bates, C. M.; Maher, M. J.; Janes, D. W.; Ellison, C. J.; Willson, C. G., Block copolymer lithography. Macromolecules, 1, 2-12 (2014)
[9] Ji, S.; Wan, L.; Liu, C. C.; Nealey, P. F., Directed self-assembly of block copolymers on chemical patterns: A platform for nanofabrication. Prog. Polym. Sci., 76-127 (2016)
[10] Black, C. T.; Guarini, K. W.; Milkove, K. R.; Baker, S. M.; Russell, T. P.; Tuominen, M. T., Integration of self-assembled diblock copolymers for semiconductor capacitor fabrication. Appl. Phys. Lett., 3, 409-411 (2001)
[11] Xiao, S.; Yang, X.; Edwards, E. W.; La, Y. H.; Nealey, P. F., Graphoepitaxy of cylinder-forming block copolymers for use as templates to pattern magnetic metal dot arrays. Nanotechnology, 7 (2005)
[12] Stoykovich, M. P.; Kang, H.; Daoulas, K. C.; Liu, G.; Liu, C. C.; De Pablo, J. J.; Müller, M.; Nealey, P. F., Directed self-assembly of block copolymers for nanolithography: Fabrication of isolated features and essential integrated circuit geometries. ACS Nano, 3, 168-175 (2007)
[13] Grosberg, A. Y.; Khokhlov, A. R.
[14] Fredrickson, G.
[15] Wang, Q.; Yan, Q.; Nealey, P. F.; de Pablo, J. J., Monte Carlo simulations of diblock copolymer thin films confined between two homogeneous surfaces. J. Chem. Phys., 1, 450-464 (1999)
[16] Binder, K., Monte Carlo simulations in polymer science, 461-474
[17] Detcheverry, F. A.; Pike, D. Q.; Nagpal, U.; Nealey, P. F.; De Pablo, J. J., Theoretically informed coarse grain simulations of block copolymer melts: Method and applications. Soft Matter, 24, 4858-4865 (2009)
[18] Matsen, M. W., Self-consistent field theory and its applications, 87-178
[19] Müller, M.; Schmid, F., Incorporating fluctuations and dynamics in self-consistent field theories for polymer blends, 1-58
[20] Uneyama, T.; Doi, M., Density functional theory for block copolymer melts and blends. Macromolecules, 1, 196-205 (2005)
[21] Fraaije, J. G., Dynamic density functional theory for microphase separation kinetics of block copolymer melts. J. Chem. Phys., 11, 9202-9212 (1993)
[22] Hannon, A. F.; Gotrik, K. W.; Ross, C. A.; Alexander-Katz, A., Inverse design of topographical templates for directed self-assembly of block copolymers. ACS Macro Lett., 3, 251-255 (2013)
[23] Qin, J.; Khaira, G. S.; Su, Y.; Garner, G. P.; Miskin, M.; Jaeger, H. M.; De Pablo, J. J., Evolutionary pattern design for copolymer directed self-assembly. Soft Matter, 48, 11467-11472 (2013)
[24] Hannon, A. F.; Ding, Y.; Bai, W.; Ross, C. A.; Alexander-Katz, A., Optimizing topographical templates for directed self-assembly of block copolymers via inverse design simulations. Nano Lett., 1, 318-325 (2014)
[25] Luo, D.; Cao, L.; Chen, P.; Ghattas, O.; Oden, J. T., Optimal design of chemoepitaxial guideposts for the directed self-assembly of block copolymer systems using an inexact Newton algorithm. J. Comput. Phys. (2023) · Zbl 07690209
[26] International technology roadmap for semiconductors 2013: Lithography (2013), https://www.semiconductors.org/wp-content/uploads/2018/08/2013Litho.pdf
[27] Ghattas, O.; Willcox, K., Learning physics-based models from data: perspectives from inverse problems and model reduction. Acta Numer., 445-554 (2021) · Zbl 1520.65043
[28] Oden, J. T., Foundations of Predictive Computational Sciences (2017), Oden Institute Reports, URL https://www.oden.utexas.edu/media/reports/2017/1701.pdf, Lecture notes
[29] Jaynes, E. T., Probability Theory: The Logic of Science (2003), Cambridge University Press · Zbl 1045.62001
[30] Oden, J. T.; Babuška, I.; Faghihi, D., Predictive computational science: Computer predictions in the presence of uncertainty, 1-26
[31] Oden, J. T., Adaptive multiscale predictive modelling. Acta Numer., 353-450 (2018) · Zbl 1430.60006
[32] Cheng, S. Z., Phase Transitions in Polymers: The Role of Metastable States, 77-155 (2008), Elsevier: Elsevier Amsterdam
[33] Li, W.; Müller, M., Defects in the self-assembly of block copolymers and their relevance for directed self-assembly. Annu. Rev. Chem. Biomol. Eng., 187-216 (2015)
[34] Fredrickson, G. H.; Binder, K., Kinetics of metastable states in block copolymer melts. J. Chem. Phys., 11, 7265-7275 (1989)
[35] Nagpal, U.; Müller, M.; Nealey, P. F.; De Pablo, J. J., Free energy of defects in ordered assemblies of block copolymer domains. ACS Macro Lett., 3, 418-422 (2012)
[36] Rottler, J.; Müller, M., Kinetic pathways of block copolymer directed self-assembly: Insights from efficient continuum modeling. ACS Nano, 10, 13986-13994 (2020)
[37] Schneider, L.; de Pablo, J. J., Combining particle-based simulations and machine learning to understand defect kinetics in thin films of symmetric diblock copolymers. Macromolecules, 21, 10074-10085 (2021)
[38] Baptista, R.; Cao, L.; Chen, J.; Ghattas, O.; Li, F.; Marzouk, Y. M.; Oden, J. T., Bayesian model calibration for block copolymer self-assembly: Likelihood-free inference and expected information gain computation via measure transport (2022), arXiv preprint, arXiv:2206.11343
[39] Khaira, G.; Doxastakis, M.; Bowen, A.; Ren, J.; Suh, H. S.; Segal-Peretz, T.; Chen, X.; Zhou, C.; Hannon, A. F.; Ferrier, N. J.; Vishwanath, V.; Sunday, D. F.; Gronheid, R.; Kline, R. J.; De Pablo, J. J.; Nealey, P. F., Derivation of multiple covarying material and process parameters using physics-based modeling of X-ray data. Macromolecules, 19, 7783-7793 (2017)
[40] Hannon, A. F.; Sunday, D. F.; Bowen, A.; Khaira, G.; Ren, J.; Nealey, P. F.; De Pablo, J. J.; Kline, R. J., Optimizing self-consistent field theory block copolymer models with X-ray metrology. Mol. Syst. Des. Eng., 2, 376-389 (2018)
[41] Baptista, R.; Zahm, O.; Marzouk, Y., An adaptive transport framework for joint and conditional density estimation (2020), arXiv preprint, arXiv:2009.10303
[42] Marzouk, Y. M.; Moselhy, T.; Parno, M.; Spantini, A., Sampling via measure transport: An introduction, 785-825
[43] Najm, H. N.; Chowdhary, K., Inference given summary statistics, 33-67
[44] Murphy, J. N.; Harris, K. D.; Buriak, J. M., Automated defect and correlation length analysis of block copolymer thin film nanopatterns. PLoS One, 7, 1-33 (2015)
[45] Andrieu, C.; Roberts, G. O., The pseudo-marginal approach for efficient Monte Carlo computations. Ann. Statist., 2, 697-725 (2009) · Zbl 1185.60083
[46] Sherlock, C.; Thiery, A. H.; Roberts, G. O.; Rosenthal, J. S., On the efficiency of pseudo-marginal random walk Metropolis algorithms. Ann. Statist., 1, 238-275 (2015) · Zbl 1326.65015
[47] Warne, D. J.; Baker, R. E.; Simpson, M. J., A practical guide to pseudo-marginal methods for computational inference in systems biology. J. Theoret. Biol. (2020)
[48] Goodfellow, I.; Bengio, Y.; Courville, A., Deep Learning (2016), MIT Press, http://www.deeplearningbook.org · Zbl 1373.68009
[49] Leibler, L., Theory of microphase separation in block copolymers. Macromolecules, 6, 1602-1617 (1980)
[50] Chen, P.; Haberman, M. R.; Ghattas, O., Optimal design of acoustic metamaterial cloaks under uncertainty. J. Comput. Phys. (2021) · Zbl 07511447
[51] Alghamdi, A. M.A.; Chen, P.; Karamehmedović, M., Optimal design of photonic nanojets under uncertainty (2022), arXiv preprint
[52] Zhao, H.; Braatz, R. D.; Bazant, M. Z., Image inversion and uncertainty quantification for constitutive laws of pattern formation. J. Comput. Phys. (2021) · Zbl 07513843
[53] Acar, P., Recent progress of uncertainty quantification in small-scale materials science. Prog. Mater. Sci. (2021)
[54] Gu, M.; Luo, Y.; He, Y.; Helgeson, M. E.; Valentine, M. T., Uncertainty quantification and estimation in differential dynamic microscopy. Phys. Rev. E (2021)
[55] Yoshinaga, N.; Tokuda, S., Bayesian modeling of pattern formation from one snapshot of pattern. Phys. Rev. E (2022)
[56] Michler, G. H.
[57] Sawyer, L. C.; Grubb, D. T.; Meyers, G. F., Polymer Microscopy (2008), Springer: Springer New York, New York
[58] Handbook of charged particle optics. Handbook of Charged Particle Optics (2009), CRC Press: CRC Press Boca Raton
[59] Egerton, R. F., Physical Principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM, Vol. 56 (2005), Springer: Springer New York, New York
[60] Roels, J.; Aelterman, J.; De Vylder, J.; Luong, H.; Saeys, Y.; Lippens, S.; Philips, W., Noise analysis and removal in 3D electron microscopy, 31-40
[61] Haider, S. A.; Cameron, A.; Siva, P.; Lui, D.; Shafiee, M. J.; Boroomand, A.; Haider, N.; Wong, A., Fluorescence microscopy image noise reduction using a stochastically-connected random field model. Sci. Rep., February, 1-16 (2016)
[62] Cranmer, K.; Brehmer, J.; Louppe, G., The frontier of simulation-based inference. Proc. Natl. Acad. Sci., 48, 30055-30062 (2020) · Zbl 1485.62004
[63] Thong, J. T.L.; Sim, K. S.; Phang, J. C.H., Single-image signal-to-noise ratio estimation. Scanning, 5, 328-336 (2001)
[64] Timischl, F., The contrast-to-noise ratio for image quality evaluation in scanning electron microscopy. Scanning, 1, 54-62 (2015)
[65] Zotta, M. D.; Nevins, M. C.; Hailstone, R. K.; Lifshin, E., The determination and application of the point spread function in the scanning electron microscope. Microsc. Microanal., 4, 396-405 (2018)
[66] Horgan, D.; Murphy, C. C., On the convergence of the chi square and noncentral chi square distributions to the normal distribution. IEEE Commun. Lett., 12, 2233-2236 (2013)
[67] Seri, R., A tight bound on the distance between a noncentral chi square and a normal distribution. IEEE Commun. Lett., 11, 1877-1880 (2015)
[68] Ohta, T.; Kawasaki, K., Equilibrium morphology of block copolymer melts. Macromolecules, 10, 2621-2632 (1986)
[69] Müller, M.; Orozco Rey, J. C., Continuum models for directed self-assembly. Mol. Syst. Des. Eng., 2, 295-313 (2018)
[70] Singh, P. K.; Cao, L.; Tan, J.; Faghihi, D., A nonlocal theory of heat transfer and micro-phase separation of nanostructured copolymers (2023), SSRN preprint, ssrn.4440811
[71] (Gompper, G.; Schick, M., Polymer Melts and Mixtures. Polymer Melts and Mixtures, Soft Matter, vol. 1 (2005), Wiley-VCH: Wiley-VCH Weinheim)
[72] Schmid, F., Theory and simulation of multiphase polymer systems, 31-80
[73] Hsu, P., Probabilistic approach to the Neumann problem. Comm. Pure Appl. Math., 4, 445-472 (1985) · Zbl 0587.60077
[74] Cao, L., Predictive Modeling and Uncertainty Quantification for Diblock Copolymer Self-Assembly (2022), The University of Texas at Austin, (Ph.D. thesis)
[75] Choksi, R.; Ren, X., On the derivation of a density functional theory for microphase separation of diblock copolymers. J. Stat. Phys., 1, 151-176 (2003) · Zbl 1034.82037
[76] Choksi, R.; Peletier, M. A.; Williams, J. F., On the phase diagram for microphase separation of diblock copolymers: An approach via a nonlocal Cahn-Hilliard functional. SIAM J. Appl. Math., 6, 1712-1738 (2009) · Zbl 1400.74089
[77] Choksi, R.; Maras, M.; Williams, J. F., 2D phase diagram for minimizers of a Cahn-Hilliard functional with long-range interactions. SIAM J. Appl. Dyn. Syst., 4, 1344-1362 (2011) · Zbl 1236.49074
[78] te Vrugt, M.; Löwen, H.; Wittkowski, R., Classical dynamical density functional theory: From fundamentals to applications. Adv. Phys., 2, 121-247 (2020)
[79] Schmid, F.; Li, B., Dynamic self-consistent field approach for studying kinetic processes in multiblock copolymer melts. Polymers, 10 (2020)
[80] Gómez, H.; Calo, V. M.; Bazilevs, Y.; Hughes, T. J., Isogeometric analysis of the Cahn-Hilliard phase-field model. Comput. Methods Appl. Mech. Engrg., 49, 4333-4352 (2008) · Zbl 1194.74524
[81] Wu, X.; van Zwieten, G. J.; van der Zee, K. G., Stabilized second-order convex splitting schemes for Cahn-Hilliard models with application to diffuse-interface tumor-growth models. Int. J. Numer. Methods Biomed. Eng., 2, 180-203 (2014)
[82] Shen, J.; Xu, J.; Yang, J., A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev., 3, 474-506 (2019) · Zbl 1422.65080
[83] Cao, L.; Ghattas, O.; Oden, J. T., A globally convergent modified Newton method for the direct minimization of the Ohta-Kawasaki energy with application to the directed self-assembly of diblock copolymers. SIAM J. Sci. Comput., 1, B51-B79 (2022) · Zbl 1480.49027
[84] Wang, S.; Tsui, K. L.; Chen, W., Bayesian validation of computer models. Technometrics, 439-451 (2009)
[85] Hawkins-Daarud, A.; Prudhomme, S.; van der Zee, K. G.; Oden, J. T., Bayesian calibration, validation, and uncertainty quantification of diffuse interface models of tumor growth. J. Math. Biol., 1457-1485 (2013) · Zbl 1280.35163
[86] Farrell, K.; Oden, J. T.; Faghihi, D., A Bayesian framework for adaptive selection, calibration, and validation of coarse-grained models of atomistic systems. J. Comput. Phys., 189-208 (2015) · Zbl 1349.62078
[87] Robert, C. P.; Casella, G.
[88] Andrieu, C.; Vihola, M., Convergence properties of pseudo-marginal Markov chain Monte Carlo algorithms. Ann. Appl. Probab., 1030-1077 (2015) · Zbl 1326.65012
[89] Pitt, M. K.; Silva, R.d. S.; Giordani, P.; Kohn, R., On some properties of Markov chain Monte Carlo simulation methods based on the particle filter. J. Econometrics, 2, 134-151 (2012) · Zbl 1443.62499
[90] Doucet, A.; Pitt, M. K.; Deligiannidis, G.; Kohn, R., Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator. Biometrika, 295-313 (2015) · Zbl 1452.62055
[91] Choksi, R., Scaling laws in microphase separation of diblock copolymers. J. Nonlinear Sci., 3, 223-236 (2001) · Zbl 1023.82015
[92] Mirza, M.; Osindero, S., Conditional generative adversarial nets (2014), arXiv preprint, arXiv:1411.1784
[93] Papamakarios, G.; Nalisnick, E.; Rezende, D. J.; Mohamed, S.; Lakshminarayanan, B., Normalizing flows for probabilistic modeling and inference. J. Mach. Learn. Res., 1 (2021) · Zbl 07370574
[94] Clevert, D.-A.; Unterthiner, T.; Hochreiter, S., Fast and accurate deep network learning by exponential linear units (ELUs) (2016), arXiv preprint, arXiv:1511.07289
[95] Kingma, D. P.; Ba, J., Adam: A method for stochastic optimization (2017), arXiv preprint, arXiv:1412.6980
[96] Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; Desmaison, A.; Kopf, A.; Yang, E.; DeVito, Z.; Raison, M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.; Chintala, S., PyTorch: An imperative style, high-performance deep learning library, 8024-8035
[97] Haario, H.; Saksman, E.; Tamminen, J., An adaptive Metropolis algorithm. Bernoulli, 2, 223-242 (2001) · Zbl 0989.65004
[98] Alnæ s, M. S.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M. E.; Wells, G. N., The FEniCS project version 1.5. Arch. Numer. Softw., 100 (2015)
[99] Villa, U.; Petra, N.; Ghattas, O., hIPPYlib: An extensible software framework for large-scale inverse problems. J. Open Source Softw., 30 (2018)
[100] Villa, U.; Petra, N.; Ghattas, O., hIPPYlib: An extensible software framework for large-scale inverse problems governed by PDEs: Part I: Deterministic inversion and linearized Bayesian inference. ACM Trans. Math. Software, 2 (2021) · Zbl 07467976
[101] Vats, D.; Flegal, J. M.; Jones, G. L., Multivariate output analysis for Markov chain Monte Carlo. Biometrika, 2, 321-337 (2019) · Zbl 1434.62100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.