×

Baire classes of complex \(L_1\)-preduals. (English) Zbl 1363.46019

Summary: Let \(X\) be a complex \(L_1\)-predual, non-separable in general. We investigate extendability of complex-valued bounded homogeneous Baire-\(\alpha \) functions on the set \(\operatorname{ext}B_{X^*}\) of the extreme points of the dual unit ball \(B_{X^*}\) to the whole unit ball \(B_{X^*}\). As a corollary we show that, given \(\alpha \in [1,\omega_1)\), the intrinsic \(\alpha \)-th Baire class of \(X\) can be identified with the space of bounded homogeneous Baire-\(\alpha \) functions on the set \(\operatorname{ext} B_{X^*}\) when \(\operatorname{ext} B_{X^*}\) satisfies certain topological assumptions. The paper is intended to be a complex counterpart to the same authors’ paper: [“Baire classes of non-separable \(L_1\)-preduals”, Q. J. Math. 66, No. 1, 251–263 (2015; Zbl 1326.46015)]. As such it generalizes former work of J. Lindenstrauss and D. E. Wulbert [J. Funct. Anal. 4, 332–349 (1969; Zbl 0184.15102)], F. Jellett [Q. J. Math., Oxf. II. Ser. 36, 71–73 (1985; Zbl 0582.46010)].

MSC:

46B25 Classical Banach spaces in the general theory
26A21 Classification of real functions; Baire classification of sets and functions

References:

[1] E. M. Alfsen: Compact Convex Sets and Boundary Integrals. Ergebnisse der Mathematik und ihrer Grenzgebiete 57, Springer, New York, 1971.
[2] S. A. Argyros, G. Godefroy, H. P. Rosenthal: Descriptive set theory and Banach spaces. Handbook of the Geometry of Banach Spaces, Vol. 2 (W. B. Johnson et al., eds.). North-Holland, Amsterdam, 2003, pp. 1007–1069. · Zbl 1121.46008
[3] E. G. Effros: On a class of complex Banach spaces. Ill. J. Math. 18 (1974), 48–59. · Zbl 0291.46011
[4] A. J. Ellis, T. S. S. R. K. Rao, A. K. Roy, U. Uttersrud: Facial characterizations of complex Lindenstrauss spaces. Trans. Am. Math. Soc. 268 (1981), 173–186. · Zbl 0538.46013 · doi:10.1090/S0002-9947-1981-0628453-7
[5] P. Holický, O. Kalenda: Descriptive properties of spaces of measures. Bull. Pol. Acad. Sci., Math. 47 (1999), 37–51. · Zbl 0929.54026
[6] O. Hustad: Intersection properties of balls in complex Banach spaces whose duals are L 1 spaces. Acta Math. 132 (1974), 283–313. · Zbl 0309.46025 · doi:10.1007/BF02392118
[7] F. Jellett: On affine extensions of continuous functions defined on the extreme boundary of a Choquet simplex. Q. J. Math., Oxf. II. Ser. 36 (1985), 71–73. · Zbl 0582.46010 · doi:10.1093/qmath/36.1.71
[8] K. Kuratowski: Topology. Vol. I. New edition, revised and augmented, Academic Press, New York; PWN-Polish Scientific Publishers, Warsaw, 1966. · Zbl 0158.40802
[9] H. E. Lacey: The Isometric Theory of Classical Banach Spaces. Die Grundlehren der mathematischen Wissenschaften 208, Springer, New York, 1974.
[10] A. J. Lazar: The unit ball in conjugate L 1 spaces. Duke Math. J. 39 (1972), 1–8. · Zbl 0235.46029 · doi:10.1215/S0012-7094-72-03901-4
[11] A. Lima: Complex Banach spaces whose duals are L 1-spaces. Isr. J. Math. 24 (1976), 59–72. · Zbl 0334.46014 · doi:10.1007/BF02761429
[12] J. Lindenstrauss, D. E. Wulbert: On the classification of the Banach spaces whose duals are L 1 spaces. J. Funct. Anal. 4 (1969), 332–349. · Zbl 0184.15102 · doi:10.1016/0022-1236(69)90003-2
[13] P. Ludvík, J. Spurný: Baire classes of non-separable L 1-preduals. Q. J. Math. 66 (2015), 251–263. · Zbl 1326.46015 · doi:10.1093/qmath/hau007
[14] P. Ludvík, J. Spurný: Baire classes of L 1-preduals and C*-algebras. Ill. J. Math. 58 (2014), 97–112. · Zbl 1323.46005
[15] P. Ludvík, J. Spurný: Descriptive properties of elements of biduals of Banach spaces. Stud. Math. 209 (2012), 71–99. · Zbl 1364.46011 · doi:10.4064/sm209-1-6
[16] J. Lukeš, J. Malý, I. Netuka, J. Spurný: Integral Representation Theory: Applications to Convexity, Banach Spaces and Potential Theory. De Gruyter Studies in Mathematics 35, Walter de Gruyter, Berlin, 2010.
[17] W. Lusky: Every separable L 1-predual is complemented in a C*-algebra. Stud. Math. 160 (2004), 103–116. · Zbl 1054.46009 · doi:10.4064/sm160-2-1
[18] G. H. Olsen: On the classification of complex Lindenstrauss spaces. Math. Scand. 35 (1975), 237–258. · Zbl 0325.46021
[19] C. A. Rogers, J. E. Jayne: K-analytic sets. Analytic Sets. Lectures delivered at the London Mathematical Society Instructional Conference on Analytic Sets held at University College, University of London, 1978, Academic Press, London, 1980, pp. 1–181.
[20] A. K. Roy: Convex functions on the dual ball of a complex Lindenstrauss space. J. Lond. Math. Soc., II. Ser. 20 (1979), 529–540. · Zbl 0421.46008 · doi:10.1112/jlms/s2-20.3.529
[21] W. Rudin: Real and Complex Analysis. McGraw-Hill, New York, 1987. · Zbl 0925.00005
[22] M. Talagrand: A new type of affine Borel function. Math. Scand. 54 (1984), 183–188. · Zbl 0562.46005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.