×

Continuous projections, duality, and the diagonal mapping in weighted spaces of holomorphic functions with mixed norm. (English. Russian original) Zbl 0960.32007

J. Math. Sci., New York 101, No. 3, 3211-3215 (2000); translation from Zap. Nauchn. Semin. POMI 247, 268-275 (1997).
From the introduction: Let \(U^n=\{z=(z_1, \dots, z_n):|z_j |<1\), \(j=1,\dots, n\}\) be the unit polydisk in the complex \(n\)-dimensional space \(\mathbb{C}^n\), and let \(\mathbb{T}^n\) be the frame of \(U^n\). Let \(\vec p=(p_1, \dots,p_n)\), \(\vec\omega(t) =(\omega_1(t), \dots,\omega_n (t))\), where \(0<p_j <+\infty\), and \(\omega_j(t)\) are positive slowly varying functions on \((0,1]\). We denote by \(L^{\vec p}(\vec\omega)\) the space of functions \(f\) measurable in \(U^n\) and satisfying \[ \begin{split} \|f\|_{L^{\vec p}(\vec \omega)}= \left(\int_U \omega_n\bigl(1- |\zeta_n |\bigr) \left(\int_U \omega_{n-1} \bigl(1-|\zeta_{n-1} |\bigr) \dots\left(\int_U \bigl|f(\zeta_1, \dots, \zeta_n)\bigr |^{p_1}\times \right.\right.\right.\\ \times \left. \left. \left.\omega_1\bigl(1-|\zeta_1 |\bigr) dm_2(\zeta_1) \right)^{p_2 \over p_1}\dots dm_2(\zeta_{n-1}) \right)^{p_n \over p_{n-1}}dm_2 (\zeta_n) \right)^{1\over p_n}< +\infty, \end{split} \] where \(dm_2\) is the planar Lebesgue measure on \(U\). The subspace of \(L^{\vec p}(\vec\omega)\) consisting of functions holomorphic in \(U^n\) is denoted by \(H^{\vec p}(\vec \omega)\), and the subspace consisting of \(n\)-harmonic functions is denoted by \(h^{\vec p}(\vec \omega)\).
We construct a bounded linear operator mapping \(L^{\vec p}(\vec\omega)\) to \(H^{\vec p}(\vec\omega)\) for all \(\vec p=(p_1, \dots, p_n)\), \(1\leq p_j< +\infty\), and also a mapping \(h^{\vec p}(\vec\omega)\) of \(L\vec p(\vec\omega)\) onto \(H^{\vec p}(\vec\omega)\) for \(0<p_j<1\), \(j=1, \dots,n\). Also, we obtain a complete description of continuous linear functionals on \(H^{\vec p}(\vec\omega)\) and characterize the traces of functions belonging to \(H^{\vec p}(\vec \omega)\) on the diagonal of \(U^n\) for all \(\vec p\) and \(\vec\omega\). Moreover, we construct a linear extension from the diagonal of the polydisk to the entire polydisk.

MSC:

32A37 Other spaces of holomorphic functions of several complex variables (e.g., bounded mean oscillation (BMOA), vanishing mean oscillation (VMOA))
Full Text: DOI

References:

[1] A. Benedek and R. Panzone, ”The spacesLp with mixed norm,”Duke Math. J.,28, 301–324 (1961). · Zbl 0107.08902 · doi:10.1215/S0012-7094-61-02828-9
[2] S. M. Nikolskii,Approximation of Functions of Several Variables [in Russian], Moscow (1969).
[3] O. V. Besov, V. P. Il’in, and S. M. Nikolskii,Integral Representations of Functions and Embedding Theorems [in Russian], Moscow (1975).
[4] H. Triebel,Theory of Function Spaces [Russian translation], Moscow (1986).
[5] P. L. Duren,Theory of Hp Spaces Academic Press, New York-London (1970). · Zbl 0215.20203
[6] W. Rudin,Function Theory in Polydics, W. A. Benjamin, New York-Amsterdam (1969). · Zbl 0177.34101
[7] A. B. Aleksandrov, ”Essays on non locally convex Hardy classes,”Lect. Notes Math.,844, 1–90 (1981). · Zbl 0482.46035 · doi:10.1007/BFb0096996
[8] A. Djrbashian and F. A. Shamoyan, ”Topics in the theory ofA {\(\alpha\)} p spaces,” in:Teubner Texte zur Math.,105, Leipzig (1988).
[9] S. V. Shvedenko, ”Hardy classes and related spaces of analytic functions in the disk, polydisk, and ball,”Itogi Nauki i Tekhniki, VINITI, Mat. Anal.,23, 3–103 (1985). · Zbl 0603.32004
[10] F. A. Shamoyan, ”The diagonal mapping and representation of anisotropic spaces of functions holomorphic in a polydisk,”Sib. Math. Zh.,31, 199–215 (1990). · Zbl 0723.32002
[11] A. L. Shields and D. L. Williams, ”Bounded projections, duality and multipliers in the space of analytic functions,”Trans. Am. Math. Soc.,162, 287–302 (1971). · Zbl 0227.46034
[12] M. Seneta,Properly Varying Functions [in Russian], Moscow (1985). · Zbl 0563.26002
[13] M. M. Dzhrbaslyan, ”Representation problem for analytic functions,”Soobshch. Inst. Mat. Mekh. AN Arm. SSR, 3–30 (1948).
[14] F. Forelly and W. Rudin, ”Projection spaces of holomorphic functions in balls,”Indiana Univ. Math. J.,24, 596–602 (1974).
[15] A. Frezier, ”The dual space ofHp of a polydisk for 0<p<1,”Duke Math. J.,39, 369–379 (1972). · Zbl 0237.32005 · doi:10.1215/S0012-7094-72-03944-0
[16] F. A. Shamoyan, ”Embedding theorems and characterization of traces in the spacesHp(Un), 0<p<+”Mat. Sb.,107, 446–466 (1978).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.