×

Constructive description of the Besov classes in convex domains in \(\mathbb{C}^{d}\). (English. Russian original) Zbl 1430.32003

J. Math. Sci., New York 202, No. 4, 573-600 (2014); translation from Zap. Nauchn. Semin. POMI 416, 136-174 (2013).
Summary: The method of pseudoanalytic continuation developed by E. M. Dyn’kin is extended to convex domains in \(\mathbb{C}^{d}\) and used to give a constructive description of the Besov classes in such domains.

MSC:

32E30 Holomorphic, polynomial and rational approximation, and interpolation in several complex variables; Runge pairs
32D15 Continuation of analytic objects in several complex variables
32A37 Other spaces of holomorphic functions of several complex variables (e.g., bounded mean oscillation (BMOA), vanishing mean oscillation (VMOA))
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI

References:

[1] L. A. Aizenberg and A. P. Yuzhakov, Integral Representations and Residues in Complex Analysis [in Russian], Moscow (1979). · Zbl 0683.32012
[2] Yu. A. Brudnyi, “Spaces that are definable by means of local approximations,” Trudy Moskov. Mat. Ob., 24, 69-132 (1971). · Zbl 0254.46018
[3] Yu. A. Brudnyi and J. P. Irodova, “Nonlinear spline approximation of functions of several variables and <Emphasis Type=”Italic“>B-spaces,” Algebra Analiz, 4, 45-79 (1992). · Zbl 0765.41013
[4] V. K. Dzyadyk, Introduction to the Theory of Uniform Approximation of Functions by Polynomials [in Russian], Moscow (1977). · Zbl 0481.41001
[5] E. M. Dyn’kin, “Constructive characterization of S. L. Sobolev and O. V. Besov classes,” Trudy Mat. Inst. AN SSSR, 155, 41-76 (1981). · Zbl 0496.46021
[6] A. S. Rotkevich, “The Aizenberg formula in nonconvex domains and some of its applications,” Zap. Nauchn. Semin. POMI, 389, 206-231 (2011).
[7] A. S. Rotkevich, “The Cauchy-Leray-Fantappiè integral in linearly convex domains,” Zap. Nauchn. Semin. POMI, 201, 172-188 (2012).
[8] G. H. Hardy, J. E. Littlewood, and G. Pòlya, Inequalities [Russian translation], Moscow (1948). · JFM 60.0169.01
[9] N. A. Shirokov, “A direct theorem in a strictly convex domain in <Emphasis Type=”Italic“>ℂ <Emphasis Type=”Italic“>n,” Zap. Nauchn. Semin. POMI, 206, 151-173 (1913). · Zbl 0808.32018
[10] N. A. Shirokov, “Uniform polynomial approximations in convex domains in <Emphasis Type=”Italic“>ℂ <Emphasis Type=”Italic“>n,” Zap. Nauchn. Semin. POMI, 333, 98-112 (2006). · Zbl 1158.41316
[11] K. Adachi, Several Complex Variables and Integral Formulas, World Scientific (2007). · Zbl 1153.32016
[12] F. Beatrous Jr., “Estimates for continuations of holomorphic functions,” Michigan Math. J., 32, 361-380 (1985). · Zbl 0584.32024 · doi:10.1307/mmj/1029003244
[13] T. Bloom et al, “Polynomial interpolation and approximation in <Emphasis Type=”Italic“>ℂ <Emphasis Type=”Italic“>d,” (2011) arXiv preprint arXiv:1111.6418.
[14] C. Fefferman and E. M. Stein, “<Emphasis Type=”Italic“>H <Emphasis Type=”Italic“>p spaces of several variables,” Acta Math., 129, 137-193 (1972). · Zbl 0257.46078 · doi:10.1007/BF02392215
[15] J. Leray, “Le calcul différentiel et intégral sur une variété analytique complexe. (Problème de Cauchy. III),” Bulletin de la Société mathématique de France, 87, 81-180 (1959). · Zbl 0199.41203
[16] N. Levenberg, “Approximation in <Emphasis Type=”Italic“>ℂ <Emphasis Type=”Italic“>N,” Surv. Appr. Theory, 2, 92-140 (2006). · Zbl 1106.32012
[17] R. M. Range, Holomorphic Functions and Integral Representations in Several Complex Variables, Springer-Verlag (1986). · Zbl 0591.32002
[18] W. Rudin, Function Theory in the Unit Ball of ℂd, Springer-Verlag (1980). · Zbl 0495.32001
[19] M. Simon Salamon, “Hermitian geometry,” in: Invitations to Geometry and Topology, Oxf. Grad. Texts Math, 7, 233-291 (2002). · Zbl 0996.54501
[20] N. A. Shirokov, “Jackson-Bernstein theorem in strictly pseudoconvex domains in <Emphasis Type=”Italic“>ℂ <Emphasis Type=”Italic“>n,” Constructive Approximation, 5, 455-461 (1989). · Zbl 0683.32012 · doi:10.1007/BF01889621
[21] E. L. Stout, “<Emphasis Type=”Italic“>H <Emphasis Type=”Italic“>p-functions on strictly pseudoconvex domains,” Amer. J. Math., 98, 821-852 (1976). · Zbl 0341.32013 · doi:10.2307/2373817
[22] H. Triebel, Theory of Function Spaces. III, Birkhauser, Basel (2006). · Zbl 1104.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.