×

Characterizations for Besov spaces and applications. I. (English) Zbl 1085.32003

This article is a contribution to the theory of holomorphic function spaces on domains \(D\) in \(\mathbb{C}^n\) for which the complex geometry of the boundary is well understood: namely, strongly pseudoconvex domains, domains of finite type in \(\mathbb{C}^2\), and convex domains of finite type in \(\mathbb{C}^n\).
Let \(P\) denote the Bergman projection from the space \(L^2(D)\) of square-integrable functions onto the holomorphic subspace, and let \(K(w,z)\) denote the corresponding Bergman kernel function. Let \(d\lambda(z)\) denote the Lebesgue measure weighted by the factor \(K(z,z)\), and let \(\delta(z)\) denote the distance from a point \(z\) in \(D\) to the boundary of \(D\). The authors consider the holomorphic Besov space \(B^p(D)\) consisting of those holomorphic functions \(f\) on \(D\) for which \(\delta(z)^{n+1}\nabla^{n+1} f(z)\) belongs to the space \(L^p(D,d\lambda)\); the space \(B^\infty(D)\) is understood as the usual holomorphic Bloch space.
The main theorem states that when \(1\leq p\leq\infty\), the Bergman projection \(P\) maps the space \(L^p(D,d\lambda)\) continuously onto \(B^p(D)\). Moreover, there is a concrete map \(V\colon B^p(D) \to L^p(D,d\lambda)\) which is bounded and linear such that \(PV\) equals the identity on \(B^p(D)\). For the case of the unit ball, the theorem is contained in work of F. Beatrous and J. Burbea [Diss. Math. 276 (1989; Zbl 0691.46024)] and of M. M. Peloso [Mich. Math. J. 39, No. 3, 509–536 (1992; Zbl 0779.32012)]. The authors give as applications some results on small Hankel operators.

MSC:

32A37 Other spaces of holomorphic functions of several complex variables (e.g., bounded mean oscillation (BMOA), vanishing mean oscillation (VMOA))
46E15 Banach spaces of continuous, differentiable or analytic functions
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
Full Text: DOI

References:

[1] Arazy, J.; Fisher, D.; Peetre, J., Hankel operators on weighted Bergman spaces, Amer. J. Math., 111, 989-1054 (1988) · Zbl 0669.47017
[2] Beatrous, F.; Burbea, J., Sobolev spaces of holomorphic functions in the ball, Dissertationes Math., 276, 1-57 (1989) · Zbl 0628.42007
[3] Beatrous, F.; Li, S.-Y., On the boundedness and compactness of operators of Hankel type, J. Funct. Anal., 111, 350-379 (1993) · Zbl 0793.47022
[4] Beatrous, F.; Li, S.-Y., Trace ideal criteria for operators of Hankel type, Illinois J. Math., 39, 723-754 (1995) · Zbl 0846.47020
[7] Coifman, R. R.; Rochberg, R. R., Representation theorems for holomorphic and harmonic functions in \(L^p\), SMF Astérisque, 77, 1-66 (1980) · Zbl 0472.46040
[8] Fefferman, C., The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math., 26, 1-65 (1974) · Zbl 0289.32012
[9] Krantz, S. G.; Ma, D., On isometric isomorphisms of the Bloch spaces on the unit ball of \(C^n\), Michigan Math. J., 36, 173-180 (1989) · Zbl 0687.32022
[10] Krantz, S. G.; Li, S.-Y., Duality theorems on Hardy and Bergman spaces on convex domains of finite type in \(C^n\), Ann. Fourier Inst., 45, 1305-1327 (1995) · Zbl 0835.32004
[11] Krantz, S. G.; Li, S.-Y., On the decomposition theorems for Hardy spaces in domains in \(C^n\) and application, J. Fourier Anal. Appl., 2, 65-107 (1995) · Zbl 0886.32003
[12] Krantz, S. G.; Li, S.-Y.; Rochberg, R., Analysis of some function spaces associated to Hankel operators, Illinois J. Math., 41, 398-411 (1997) · Zbl 0878.47012
[13] Ligocka, E., On the Forelli-Rudin construction and weighted Bergman projections, Studia Math., 94, 257-272 (1989) · Zbl 0688.32020
[14] Luecking, D. H., Trace ideal criteria for Toeplitz operators, J. Funct. Anal., 73, 345-368 (1987) · Zbl 0618.47018
[15] McNeal, J., Estimates on the Bergman kernels function of convex domains, Adv. in Math., 109, 108-139 (1994) · Zbl 0816.32018
[16] Nagel, A.; Rosay, J. P.; Stein, E. M.; Wainger, S., Estimates for the Bergman and Szegö kernels in \(C^2\), Ann. of Math., 129, 113-149 (1989) · Zbl 0667.32016
[17] Peloso, M. M., Möbius invariant spaces on the ball, Michigan Math. J., 39, 509-536 (1992) · Zbl 0779.32012
[18] Phong, D. H.; Stein, E. M., Estimates for the Bergman and Szegö projections on strongly pseudoconvex domains, Duke Math. J., 44, 695-704 (1977) · Zbl 0392.32014
[19] Rochberg, R., Trace ideal criteria for Hankel operators and commutators, Indiana Univ. Math. J., 31, 913-925 (1982) · Zbl 0514.47020
[20] Symesak, F., Hankel operators on pseudoconvex domains of finite type in \(C^2\), Canad. J. Math. (1999)
[21] Timoney, R. M., Bloch functions in several complex variables, I, Bull. London Math. Soc., 12, 241-267 (1980) · Zbl 0416.32010
[22] Zhu, K., Hankel operators on Bergman spaces of bounded symmetric domains, Trans. Amer. Math. Soc., 324, 707-730 (1991) · Zbl 0734.47016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.