×

Matrix calculus-based approach to orthogonal polynomial sequences. (English) Zbl 1443.42015

Summary: In this paper, an approach to orthogonal polynomials based on matrix calculus is proposed. Known and new basic results are given, such as recurrence relations and determinant forms. New algorithms, similar, but not identical, to the Chebyshev one, for practical calculation of the polynomials are presented. The cases of monic and symmetric orthogonal polynomial sequences and the case of orthonormal polynomial sequences have been considered. Some classical and non-classical examples are given. The work is framed in a broader perspective, already started by the authors [Integral Transforms Spec. Funct. 30, No. 2, 112–127 (2019; Zbl 1433.11007); Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 4, 3829–3862 (2019; Zbl 1425.11049)]. It provides for the determination of properties of a general sequence of polynomials and, therefore, their applicability to special classes of the most important polynomials.

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
11B83 Special sequences and polynomials
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
Full Text: DOI

References:

[1] Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999) · Zbl 0920.33001
[2] Askey, R.: Orthogonal Polynomials and Special Functions. Society for Industrial and Applied Mathematics, Philadelphia (1975) · Zbl 0298.33008
[3] Brezinski, C., Padé-type Approximation and General Orthogonal Polynomials (1980), Berlin: Springer, Berlin · Zbl 0418.41012
[4] Brezinski, C.: Computational Aspects of Linear Control, vol. 1. Springer Science and Business Media, New York (2013) · Zbl 1010.93003
[5] Caira, R.; Costabile, F., Two steps methods of Runge-Kutta type for initial value problem \(y^{\prime \prime }=f(x, y)\), Rend. Mat. Appl., 7, 6, 441-465 (1986) · Zbl 0667.65058
[6] Chebychev, M.: Sur les fractions continues. Journal de Mathématiques Pures et Appliquées 2e série 3, 289-323 (1858)
[7] Chihara, T.S.: An Introduction to Orthogonal Polynomials. Courier Corporation (2011) · Zbl 0389.33008
[8] Costabile, F.; Luceri, R., On the order of a Runge-Kutta type method for the initial value problem, Rendiconti di Matematica e delle sue Applicazioni, 6, 4, 548-553 (1986) · Zbl 0667.65059
[9] Costabile, F.A.: Modern umbral calculus. An elementary introduction with applications to linear interpolation and operator approximation theory, De Gruyter Studies in Mathematics, vol. 72. De Gruyter (2019) · Zbl 1418.05001
[10] Costabile, F.A., Caira, R., Gualtieri, M.I.: A block hybrid method for non-linear second order boundary value problems. Mediterr. J. Math.16(1), Art. 17 (2019) · Zbl 1409.65047
[11] Costabile, F.A., Gualtieri, M.I., Napoli, A.: Recurrence relations and determinant forms for general polynomial sequences. Application to Genocchi polynomials. Integr. Transforms Spec. Funct. 30(2), 112-127 (2019) · Zbl 1433.11007
[12] Costabile, FA; Gualtieri, MI; Napoli, A., Polynomial sequences: elementary basic methods and application hints. A survey, RACSAM (2019) · Zbl 1425.11049 · doi:10.1007/s13398-019-00682-9
[13] Dominici, D.: Matrix factorizations and orthogonal polynomials. Random Matrices: Theory and Applications. Published on line 11 June (2019). 10.1142/S2010326320400031 · Zbl 1437.33012
[14] Draux, A., Polynômes orthogonaux formels-applications (2006), Berlin: Springer, Berlin · Zbl 0504.42001
[15] Freud, G., Orthogonal Polynomials (2014), Amsterdam: Elsevier, Amsterdam · Zbl 0265.42010
[16] Garza, LG; Garza, LE; Marcellán, F.; Pinzón-Cortés, NC, A matrix approach for the semiclassical and coherent orthogonal polynomials, Appl. Math. Comput., 256, 459-471 (2015) · Zbl 1338.42033
[17] Gautschi, W., Computational aspects of three-term recurrence relations, SIAM Rev., 9, 1, 24-82 (1967) · Zbl 0168.15004 · doi:10.1137/1009002
[18] Gautschi, W., On generating orthogonal polynomials, SIAM J. Sci. Stat. Comput., 3, 3, 289-317 (1982) · Zbl 0482.65011 · doi:10.1137/0903018
[19] Gautschi, W., Orthogonal polynomials constructive theory and applications, J. Comput. Appl. Math., 12, 61-76 (1985) · Zbl 0583.65011 · doi:10.1016/0377-0427(85)90007-X
[20] Gautschi, W., On the sensitivity of orthogonal polynomials to perturbations in the moments, Numer. Math., 48, 4, 369-382 (1986) · Zbl 0613.65014 · doi:10.1007/BF01389645
[21] Gautschi, W.: Computational aspects of orthogonal polynomials. In: Orthogonal Polynomials, pp. 181-216. Springer (1990) · Zbl 0697.42017
[22] Gautschi, W., Algorithm 726: ORTHPOL-a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules, ACM Trans. Math. Softw. (TOMS), 20, 1, 21-62 (1994) · Zbl 0888.65013 · doi:10.1145/174603.174605
[23] Gautschi, W., Orthogonal polynomials: applications and computation, Acta Numer., 5, 45-119 (1996) · Zbl 0871.65011 · doi:10.1017/S0962492900002622
[24] Gautschi, W.: Orthogonal polynomials: computation and approximation. Numerical Mathematics and Scientific Computation. Oxford Science Publications. Oxford University Press, New York (2004) · Zbl 1130.42300
[25] Gautschi, W., Orthogonal polynomials (in Matlab), J. Comput. Appl. Math., 178, 1-2, 215-234 (2005) · Zbl 1067.65023 · doi:10.1016/j.cam.2004.03.029
[26] Gautschi, W.: Orthogonal polynomials, quadrature, and approximation: computational methods and software (in Matlab). In: Orthogonal Polynomials and Special Functions, pp. 1-77. Lecture Notes in Mathematics, vol. 1883. Springer, Berlin (2006) · Zbl 1101.41029
[27] Gautschi, W., Golub, G., Opfer, G.: Applications and computation of orthogonal polynomials. In: Conference at the Mathematical Research Institute Oberwolfach, Germany March 22-28, 1998. International Series in Numerical Analysis, vol. 131 (1999) · Zbl 0919.00065
[28] Geronimus, Ya L., Orthogonal Polynomials: Estimates, Asymptotic Formulas, and Series of Polynominals Orthogonal on the Unit Circle and on an Interval (1961), New York: Consultants Bureau, New York · Zbl 0093.26503
[29] Gragg, WB, Matrix interpretations and applications of the continued fraction algorithm, Rocky Mt. J. Math., 4, 2, 213-225 (1974) · Zbl 0321.65001 · doi:10.1216/RMJ-1974-4-2-213
[30] Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002) · Zbl 1011.65010
[31] Ismail, M.E.H.: Classical and quantum orthogonal polynomials in one variable. Encyclopedia of Mathematics and its Applications, vol. 98. Cambridge University Press, Cambridge (2005) · Zbl 1082.42016
[32] Koekoek, R., Lesky, P.A., Swarttouw, R.: Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer Science and Business Media, New York (2010) · Zbl 1200.33012
[33] Krall, A.M.: Hilbert space, boundary value problems and orthogonal polynomials. In: Operator Theory: Advances and Applications, vol. 133. Birkhauser Verlag, Basel (2002) · Zbl 1033.34080
[34] Legendre, A.M.: Sur l’attraction des spheroides. Mémoires de Mathématiques et de Physique, Presentés à l”Académie Royale des Sciences par divers savants, vol. 10 (1785)
[35] Levin, E.; Lubinsky, DS, Bounds and Asymptotics for Orthogonal Polynomials for Varying Weights (2018), Berlin: Springer, Berlin · Zbl 1392.41015
[36] Macdonald, I.G.: Symmetric functions and orthogonal polynomials, University Lecture Series, vol. 12. American Mathematical Society, Providence (1998) · Zbl 0887.05053
[37] Maroni, P.: Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques. Orthogonal Polynomials and their Applications (Erice, 1990), IMACS Ann. Comput. Appl. Math, vol. 9, pp. 95-130 (1991) · Zbl 0944.33500
[38] Milovanović, G.V.: Orthogonal polynomials on the real line. In: Walter Gautschi, vol. 2, pp. 3-16. Springer (2014)
[39] Nikiforov, AF; Uvarov, VB; Suslov, SK, Classical Orthogonal Polynomials of a Discrete Variable. Translated from the Russian. Springer Series in Computational Physics (1991), Berlin: Springer, Berlin · Zbl 0743.33001
[40] Rivlin, TJ, The Chebyshev Polynomials (1974), New York: Wiley, New York · Zbl 0299.41015
[41] Sack, RA; Donovan, AF, An algorithm for Gaussian quadrature given modified moments, Numer. Math., 18, 5, 465-478 (1971) · Zbl 0221.65041 · doi:10.1007/BF01406683
[42] Schoutens, W.: Stochastic processes and orthogonal polynomials, Lecture Notes in Statistics, vol. 146. Springer Science and Business Media, New York (2012) · Zbl 0960.60076
[43] Stahl, H., Steel, J., Totik, V.: General orthogonal polynomials, Encyclopedia of Mathematics and its Applications, vol. 43. Cambridge University Press, Cambridge (1992) · Zbl 0791.33009
[44] Szegô, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society, Colloquium Publications, vol. 23, Providence (1975) · Zbl 0305.42011
[45] Van Assche, W.: Orthogonal polynomials and Painlevé equations. Australian Mathematical Society Lecture Series. Cambridge University Press, Cambridge (2017) · Zbl 1387.33001
[46] Verde-Star, L., Characterization and construction of classical orthogonal polynomials using a matrix approach, Linear Algebra Appl., 438, 9, 3635-3648 (2013) · Zbl 1275.33022 · doi:10.1016/j.laa.2013.01.014
[47] Wheeler, JC, Modified moments and Gaussian quadratures, Rocky Mt. J. Math., 4, 2, 287-296 (1974) · Zbl 0309.65009 · doi:10.1216/RMJ-1974-4-2-287
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.