×

QBD processes associated with Jacobi-Koornwinder bivariate polynomials and urn models. (English) Zbl 1526.60049

Summary: We study a family of quasi-birth-and-death (QBD) processes associated with the so-called first family of Jacobi-Koornwinder bivariate polynomials. These polynomials are orthogonal on a bounded region typically known as the swallow tail. We will explicitly compute the coefficients of the three-term recurrence relations generated by these QBD polynomials and study the conditions under we can produce families of discrete-time QBD processes. Finally, we show an urn model associated with one special case of these QBD processes.

MSC:

60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis

References:

[1] Clayton, A., Quasi-birth-and-death processes and matrix-valued orthogonal polynomials, SIAM J. Matrix Anal. Appl., 31, 2239-2260 (2010) · Zbl 1210.60076 · doi:10.1137/080742816
[2] Dette, H., Reuther, B.: Some comments on quasi-birth-and-death processes and matrix measures. J. Probab. Stat. 2010, Article ID 730543 (2010) · Zbl 1205.60149
[3] Dette, H.; Reuther, B.; Studden, W.; Zygmunt, M., Matrix measures and random walks with a block tridiagonal transition matrix, SIAM J. Matrix Anal. Appl., 29, 117-142 (2006) · Zbl 1133.60339 · doi:10.1137/050638230
[4] Domínguez de la Iglesia, M.: Orthogonal polynomials in the spectral analysis of Markov processes. In: Birth-death models and diffusion, Encyclopedia of Mathematics and its Applications, vol. 181. Cambridge University Press, Cambridge (2021) · Zbl 1507.60001
[5] Dunkl, C.F., Xu, Y.: Orthogonal polynomials of several variables. In: Encyclopedia of Mathematics and Its Applications, 2nd edn., vol. 155. Cambridge University Press, Cambridge(2014) · Zbl 1317.33001
[6] Fernández, L.; de la Iglesia, MD, Quasi-birth-and-death processes and multivariate orthogonal polynomials, J. Math. Anal. Appl., 499, 125029 (2021) · Zbl 1465.60077 · doi:10.1016/j.jmaa.2021.125029
[7] Grünbaum, F.A.: Random walks and orthogonal polynomials: some challenges. In: Probability, Geometry and Integrable Systems, MSRI Publication, vol. 55 (2007) · Zbl 1184.33004
[8] Grünbaum, FA; de la Iglesia, MD, Matrix valued orthogonal polynomials arising from group representation theory and a family of quasi-birth-and-death processes, SIAM J. Matrix Anal. Appl., 30, 741-761 (2008) · Zbl 1163.60033 · doi:10.1137/070697604
[9] Grünbaum, FA; de la Iglesia, MD, Stochastic LU factorizations, Darboux transformations and urn models, J. Appl. Prob., 55, 862-886 (2018) · Zbl 1402.60090 · doi:10.1017/jpr.2018.55
[10] de la Iglesia, MD, A note on the invariant distribution of a quasi-birth-and-death process, J. Phys. A Math. Theor., 44 (2011) · Zbl 1223.60058 · doi:10.1088/1751-8113/44/13/135201
[11] de la Iglesia, MD; Juarez, C., Birth-death chains on a spider: spectral analysis and reflecting-absorbing factorization, J. Math. Anal. Appl., 517 (2023) · Zbl 1504.60150 · doi:10.1016/j.jmaa.2022.126624
[12] de la Iglesia, MD; Román, P., Some bivariate stochastic models arising from group representation theory, Stoch. Proc. Appl., 128, 3300-3326 (2018) · Zbl 1401.60138 · doi:10.1016/j.spa.2017.10.017
[13] Karlin, S.; McGregor, J., The differential equations of birth and death processes, and the Stieltjes moment problem, Trans. Am. Math. Soc., 85, 489-546 (1957) · Zbl 0091.13801 · doi:10.1090/S0002-9947-1957-0091566-1
[14] Karlin, S.; McGregor, J., The classification of birth-and-death processes, Trans. Am. Math. Soc., 86, 366-400 (1957) · Zbl 0091.13802 · doi:10.1090/S0002-9947-1957-0094854-8
[15] Karlin, S.; McGregor, J., Random walks, Ill. J. Math., 3, 66-81 (1959) · Zbl 0104.11804
[16] Koornwinder, T.H., Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators, I, II, Nederl. Akad. Wetensch. Proc. Ser. A 77=Indag. Math. 36 (1974), 48-66 · Zbl 0263.33011
[17] Koornwinder, T.H.: Two-variable analogues of the classical orthogonal polynomials. In: Theory and Application of Special Functions, pp. 435-495. R. Askey Editor, Academic Press (1975) · Zbl 0326.33002
[18] Koornwinder, TH; Sprinkhuizen-Kuyper, I., Generalized power series expansions for a class of orthogonal polynomials in two variables, SIAM J. Math. Anal., 9, 457-483 (1978) · Zbl 0395.33008 · doi:10.1137/0509028
[19] Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling, ASA-SIAM Series on Statistics and Applied Probability (1999) · Zbl 0922.60001
[20] Sprinkhuizen-Kuyper, I., Orthogonal polynomials in two variables. A further analysis of the polynomials orthogonal over a region bounded by two lines and a parabola, SIAM J. Math. Anal., 7, 501-518 (1976) · Zbl 0332.33011 · doi:10.1137/0507041
[21] Xu, Y., Orthogonal polynomials and expansions for a family of weight functions in two variables, Constr. Approx., 36, 161-190 (2012) · Zbl 1264.33017 · doi:10.1007/s00365-011-9149-4
[22] Xu, Y., Minimal cubature rules and polynomial interpolation in two variables II, J. Approx. Theory, 214, 49-68 (2017) · Zbl 1356.41002 · doi:10.1016/j.jat.2016.11.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.