×

Outcomes of the Abel identity. (English) Zbl 1269.05012

Summary: We discuss some outcomes of an umbral generalization of the Abel identity. First we prove that a concise proof of the Lagrange inversion formula can be deduced from it. Second, we show that the whole class of Sheffer sequences, if manipulated to an umbral level, coincides with the subclass of Abel polynomials. Finally, we apply these techniques to obtain explicit formulae for some classical polynomial sequences, even in non Sheffer cases (Chebyshev and Gegenbauer polynomials).

MSC:

05A40 Umbral calculus
13J05 Power series rings
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)

References:

[1] J. Agapito, Â Mestre, P. Petrullo and M. M. Torres, A symbolic treatment of Riordan arrays, preprint. · Zbl 1282.05013
[2] L. Comtet, Advanced combinatorics: the art of finite and infinite expansions, D. Reidel Publishing Co., Dordrecht, 1974. · Zbl 0283.05001
[3] E. Di Nardo, H. Niederhausen and D. Senato, A symbolic handling of Sheffer sequences, Ann. Mat. Pura Appl. 190 (no. 4) (2011), 489–506. · Zbl 1292.05052
[4] Di Nardo , Petrullo P, Senato D.: Cumulants and convolutions via Abel polynomials. European J Combin. 31, 1792–1804 (2010) · Zbl 1230.05273 · doi:10.1016/j.ejc.2010.03.002
[5] E. Di Nardo and D. Senato, Umbral nature of Poisson random variable, in: Algebraic combinatorics and computer science (eds H. Crapo and D. Senato), Springer-Verlag (2001), 245–266. · Zbl 0970.05012
[6] di Nardo E., Senato D.: An umbral setting for cumulants and factorial moments. European J. Combin. 27, 394–413 (2006) · Zbl 1085.05018 · doi:10.1016/j.ejc.2004.12.001
[7] D. E. Knuth, Convolution Polynomials, The Mathematica Journal 2(1992), 67-78.
[8] P. Petrullo, A symbolic treatment of Abel polynomials, in: From Combinatorics to Philosophy: the Legacy of G.-C. Rota (eds. E. Damiani, O. D’Antona, V. Marra and F. Palombi), Springer-Verlag (2009), 183–196.
[9] Petrullo P., Senato D.: An instance of umbral methods in representation theory: the parking function module. Pure Math. Appl. 19, 105–116 (2008) · Zbl 1224.05032
[10] Roman S.: The umbral calculus. Academic Press, Inc., New York (1984) · Zbl 0536.33001
[11] Rota G.-C.: The Number of Partitions of a Set.. Amer. Math. Monthly 71, 498–504 (1964) · Zbl 0121.01803 · doi:10.2307/2312585
[12] Rota G.-C., Shen J., Taylor B.D.: All polynomials of binomial type are represented by Abel polynomials. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25, 731–738 (1997) · Zbl 1003.05011
[13] Rota G.-C., Taylor B.D.: The classical umbral calculus. SIAM J. Math. Anal. 25, 694–711 (1994) · Zbl 0797.05006 · doi:10.1137/S0036141093245616
[14] Taylor B.D.: Umbral presentations for polynomial sequences. Comput. Math. Appl. 41, 1085–1098 (2001) · Zbl 0978.00049 · doi:10.1016/S0898-1221(01)00083-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.