×

On the \(D_\omega\)-classical orthogonal polynomials. (English) Zbl 1541.33011

Summary: We investigate the \(D_\omega\)-classical orthogonal polynomials, where \(D_\omega\) is the weighted difference operator. So, we address the problem of finding the sequence of orthogonal polynomials such that their \(D_\omega\)-derivatives is also orthogonal polynomials. To solve this problem we adopt a different approach to those employed in this topic. We first begin by determining the coefficients involved in their recurrence relations, and then providing an exhaustive list of all solutions. When \(\omega = 0\), we rediscover the classical orthogonal polynomials of Hermite, Laguerre, Bessel and Jacobi. For \(\omega =1\), we encounter the families of discrete classical orthogonal polynomials as particular cases.

MSC:

33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
33E30 Other functions coming from differential, difference and integral equations
39A13 Difference equations, scaling (\(q\)-differences)
39A12 Discrete version of topics in analysis
39A70 Difference operators

References:

[1] Abdelkaraim, F.; Maroni, P., \(D_\omega \)-Classical orthogonal polynomials, Results Math., 32, 1-18, 1997 · Zbl 0889.42020 · doi:10.1007/BF03322520
[2] Al-Salam, WA; Nevai, P., Characterization theorems for orthogonal polynomials, NATO ASI Series C. Orthogonal Polynomials: Theory and Practice, 1-24, 1990, Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 0704.42021 · doi:10.1007/978-94-009-0501-6_1
[3] Al-Salam, WA; Chihara, TS, Another characterisation of the classical orthogonal polynomials, SIAM J. Math. Anal., 3, 65-70, 1972 · Zbl 0238.33010 · doi:10.1137/0503007
[4] Askey, R., Continuous Hahn polynomials, J. Phys. A Math. Gen., 18, L, 1017-1019, 1985 · Zbl 0582.33007 · doi:10.1088/0305-4470/18/16/004
[5] Charlier, C.V.L.: Über die Darstellung willkörlicher Functionen. Arkiv. för Mat. Astr. Och Fysik. 20(2), 1-35 (1905-1906) · JFM 36.0460.01
[6] Chihara, TS, An Introduction to Orthogonal Polynomials, 1978, New York: Gordon and Breach, New York · Zbl 0389.33008
[7] Douak, K., The relation of the \(d\)-orthogonal polynomials to the Appell polynomials, J. Comput. Appl. Math., 70, 279-295, 1996 · Zbl 0863.33007 · doi:10.1016/0377-0427(95)00211-1
[8] Douak, K.; Maroni, P., Les polynômes orthogonaux classiques de dimension deux, Analysis, 12, 71-107, 1992 · Zbl 0767.33004 · doi:10.1524/anly.1992.12.12.71
[9] Douak, K.; Maroni, P., On a new class of 2-orthogonal polynomials, I: the recurrence relations and some properties, Integral Transforms Spec. Funct., 32, 2, 134-153, 2021 · Zbl 1467.33006 · doi:10.1080/10652469.2020.1811702
[10] Garcia, AG; Marcellán, F.; Salto, L., A distributional study of discrete classical orthogonal polynomials, J. Comput. Appl. Math., 57, 147-162, 1995 · Zbl 0853.33009 · doi:10.1016/0377-0427(93)E0241-D
[11] Hahn, W., Über die Jacobischen Polynome und zwei verwandte Polynomklassen, Math. Zeit., 39, 634-638, 1935 · JFM 61.0377.01 · doi:10.1007/BF01201380
[12] Hahn, W., Über Orthogonalpolynome, die \(q-\) Differenzengleichungen gen \(\ddot{{\rm g}}\) en, Math. Nachr., 2, 4-34, 1949 · Zbl 0031.39001 · doi:10.1002/mana.19490020103
[13] Ismail, MEH, Classical and Quantum Orthogonal Polynomials in one Variable. Encyclopedia of Mathematics and its Applications, 2005, Cambridge: Cambridge University Press, Cambridge · Zbl 1082.42016
[14] Koekoek, R.; Lesky, P.; Swarttouw, F., Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer Monographs in Mathematics, 2010, Berlin: Springer, Berlin · Zbl 1200.33012 · doi:10.1007/978-3-642-05014-5
[15] Lancaster, OE, Orthogonal polynomials defined by difference equations, Am. J. Math., 63, 185-207, 1941 · JFM 67.0304.03 · doi:10.2307/2371289
[16] Lesky, P., Orthogonale Polynomsysteme als Lösungen Sturm-Liouvillescher Differenzengleichungen, Monat. Math., 66, 203-214, 1962 · Zbl 0105.05302 · doi:10.1007/BF01299044
[17] Lesky, P., Über Polynomsysteme, die Sturm-Liouvillescher Differenzengleichungen gen \(\ddot{{\rm g}}\) en, Math. Zeit., 78, 439-445, 1962 · Zbl 0107.05403 · doi:10.1007/BF01195186
[18] Loureiro, AF; Van Assche, W., Threefold symmetric Hahn-classical multiple orthogonal polynomials, Anal. Appl., 18, 2, 271-332, 2020 · Zbl 1435.33011 · doi:10.1142/S0219530519500106
[19] Maroni, P.; Brezinski, C., Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques, Orthogonal Polynomials and Their Applications, vol. 9. IMACS Annals on Computing and Applied Mathematics, 95-130, 1991, Basel: Baltzer, Basel · Zbl 0944.33500
[20] Maroni, P.: Fonctions eulériennes. Polynômes orthogonaux classiques. Techniques de l’Ingénieur, traité Généralités (Sciences Fondamentales), vol. A-154, Paris, 30 pp (1994)
[21] Maroni, P., Semi-classical character and finite-type relations between polynomial sequences, Appl. Numer. Math., 31, 295-330, 1999 · Zbl 0962.42017 · doi:10.1016/S0168-9274(98)00137-8
[22] Meixner, J., Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Function, J. Lond. Math. Soc., 9, 6-13, 1934 · Zbl 0008.16205 · doi:10.1112/JLMS/S1-9.1.6
[23] Nikiforov, AF; Suslov, SK; Uvarov, VB, Classical Orthogonal Polynomials of a Discrete Variable. Springer Series in Computational Physics, 1991, Berlin: Springer, Berlin · Zbl 0743.33001 · doi:10.1007/978-3-642-74748-9
[24] Pasternak, S., A generalization of the polynomial \(F_n(z)\), Philos. Mag., 28, 7, 209-226, 1939 · Zbl 0063.06126 · doi:10.1080/14786443908521175
[25] Pollaczek, F.: Sur une famille de polynômes orthogonaux qui contient les polynômes d’Hermite et de Laguerre comme cas limites. C.R. Acad. Sci. Paris. 230, 1563-1565 (1950). 33.0X-Zbl 0039.07704 · Zbl 0039.07704
[26] Touchard, J., Nombres exponentiels et nombres de Bernoulli, Can. J. Math., 8, 305-320, 1956 · Zbl 0071.06105 · doi:10.4153/CJM-1956-034-1
[27] Verde-Star, L., Recurrence coefficients and difference equations of classical discrete orthogonal and \(q\)-orthogonal polynomials sequences, Linear Algebra Appl., 440, 293-306, 2014 · Zbl 1285.33014 · doi:10.4153/CJM-1956-034-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.